/* * Copyright 1997, Regents of the University of Minnesota * * minitpart.c * * This file contains code that performs the initial partition of the * coarsest graph * * Started 7/23/97 * George * * $Id: minitpart.c,v 1.4 2003/07/31 16:14:40 karypis Exp $ * */ #include /************************************************************************* * This function computes the initial bisection of the coarsest graph **************************************************************************/ void MocInit2WayPartition(CtrlType *ctrl, GraphType *graph, float *tpwgts, float ubfactor) { idxtype i, dbglvl; dbglvl = ctrl->dbglvl; IFSET(ctrl->dbglvl, DBG_REFINE, ctrl->dbglvl -= DBG_REFINE); IFSET(ctrl->dbglvl, DBG_MOVEINFO, ctrl->dbglvl -= DBG_MOVEINFO); IFSET(ctrl->dbglvl, DBG_TIME, gk_startcputimer(ctrl->InitPartTmr)); switch (ctrl->IType) { case ITYPE_GGPKL: if (graph->nedges == 0) MocRandomBisection(ctrl, graph, tpwgts, ubfactor); else MocGrowBisection(ctrl, graph, tpwgts, ubfactor); break; case ITYPE_RANDOM: MocRandomBisection(ctrl, graph, tpwgts, ubfactor); break; default: errexit("Unknown initial partition type: %d\n", ctrl->IType); } IFSET(ctrl->dbglvl, DBG_IPART, mprintf("Initial Cut: %D [%D]\n", graph->mincut, graph->where[0])); IFSET(ctrl->dbglvl, DBG_TIME, gk_stopcputimer(ctrl->InitPartTmr)); ctrl->dbglvl = dbglvl; } /************************************************************************* * This function takes a graph and produces a bisection by using a region * growing algorithm. The resulting partition is returned in * graph->where **************************************************************************/ void MocGrowBisection(CtrlType *ctrl, GraphType *graph, float *tpwgts, float ubfactor) { idxtype i, j, k, nvtxs, ncon, from, bestcut, mincut, nbfs, inbfs; idxtype *bestwhere, *where; nvtxs = graph->nvtxs; MocAllocate2WayPartitionMemory(ctrl, graph); where = graph->where; bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere"); nbfs = 2*(nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS); for (inbfs=0; inbfs= graph->mincut) { bestcut = graph->mincut; idxcopy(nvtxs, where, bestwhere); if (bestcut == 0) break; } } graph->mincut = bestcut; idxcopy(nvtxs, bestwhere, where); gk_free((void **)&bestwhere, LTERM); } /************************************************************************* * This function takes a graph and produces a bisection by using a region * growing algorithm. The resulting partition is returned in * graph->where **************************************************************************/ void MocRandomBisection(CtrlType *ctrl, GraphType *graph, float *tpwgts, float ubfactor) { idxtype i, ii, j, k, nvtxs, ncon, from, bestcut, mincut, nbfs, inbfs, qnum; idxtype *bestwhere, *where, *perm; idxtype counts[MAXNCON]; float *nvwgt; nvtxs = graph->nvtxs; ncon = graph->ncon; nvwgt = graph->nvwgt; MocAllocate2WayPartitionMemory(ctrl, graph); where = graph->where; bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere"); nbfs = 2*(nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS); perm = idxmalloc(nvtxs, "BisectGraph: perm"); for (inbfs=0; inbfsmincut); for (i=0; incon; i++) mprintf("(%.3f %.3f) ", graph->npwgts[i], graph->npwgts[graph->ncon+i]); mprintf("]\n"); */ if (inbfs == 0 || bestcut >= graph->mincut) { bestcut = graph->mincut; idxcopy(nvtxs, where, bestwhere); if (bestcut == 0) break; } } graph->mincut = bestcut; idxcopy(nvtxs, bestwhere, where); gk_free((void **)&bestwhere, &perm, LTERM); } /************************************************************************* * This function balances two partitions by moving the highest gain * (including negative gain) vertices to the other domain. * It is used only when tha unbalance is due to non contigous * subdomains. That is, the are no boundary vertices. * It moves vertices from the domain that is overweight to the one that * is underweight. **************************************************************************/ void MocInit2WayBalance(CtrlType *ctrl, GraphType *graph, float *tpwgts) { idxtype i, ii, j, k, l, kwgt, nvtxs, nbnd, ncon, nswaps, from, to, pass, me, cnum, tmp; idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind; idxtype *perm, *qnum; float *nvwgt, *npwgts; PQueueType parts[MAXNCON][2]; idxtype higain, oldgain, mincut; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; adjncy = graph->adjncy; nvwgt = graph->nvwgt; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; npwgts = graph->npwgts; bndptr = graph->bndptr; bndind = graph->bndind; perm = idxwspacemalloc(ctrl, nvtxs); qnum = idxwspacemalloc(ctrl, nvtxs); /* This is called for initial partitioning so we know from where to pick nodes */ from = 1; to = (from+1)%2; if (ctrl->dbglvl&DBG_REFINE) { mprintf("Parts: ["); for (l=0; lnvtxs, graph->nbnd, graph->mincut, Compute2WayHLoadImbalance(ncon, npwgts, tpwgts)); } for (i=0; imincut); ASSERT(CheckBnd(graph)); ASSERT(CheckGraph(graph)); /* Compute the queues in which each vertex will be assigned to */ for (i=0; i 0) PQueueInsert(&parts[qnum[i]][0], i, ed[i]-id[i]); else PQueueInsert(&parts[qnum[i]][1], i, ed[i]-id[i]); } } mincut = graph->mincut; nbnd = graph->nbnd; for (nswaps=0; nswapsdbglvl&DBG_MOVEINFO) { mprintf("Moved %6D from %D(%D). [%5D] %5D, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], mincut); for (l=0; l 0) mprintf("\t Pulled from the interior!\n"); } /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j 0 && bndptr[k] == -1) { /* It moves in boundary */ PQueueDelete(&parts[qnum[k]][1], k, oldgain); PQueueInsert(&parts[qnum[k]][0], k, ed[k]-id[k]); } else { /* It must be in the boundary already */ if (bndptr[k] == -1) mprintf("What you thought was wrong!\n"); PQueueUpdate(&parts[qnum[k]][0], k, oldgain, ed[k]-id[k]); } } /* Update its boundary information */ if (ed[k] == 0 && bndptr[k] != -1) BNDDelete(nbnd, bndind, bndptr, k); else if (ed[k] > 0 && bndptr[k] == -1) BNDInsert(nbnd, bndind, bndptr, k); } ASSERTP(ComputeCut(graph, where) == mincut, ("%d != %d\n", ComputeCut(graph, where), mincut)); } if (ctrl->dbglvl&DBG_REFINE) { mprintf("\tMincut: %6D, NBND: %6D, NPwgts: ", mincut, nbnd); for (l=0; lmincut = mincut; graph->nbnd = nbnd; for (i=0; imincut); ASSERT(CheckBnd(graph)); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); } /************************************************************************* * This function selects the partition number and the queue from which * we will move vertices out **************************************************************************/ idxtype SelectQueueOneWay(idxtype ncon, float *npwgts, float *tpwgts, idxtype from, PQueueType queues[MAXNCON][2]) { idxtype i, cnum=-1; float max=0.0; for (i=0; i= max && PQueueGetSize(&queues[i][0]) + PQueueGetSize(&queues[i][1]) > 0) { max = npwgts[from*ncon+i]-tpwgts[0]; cnum = i; } } return cnum; }