/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 2004-2011 OpenCFD Ltd. \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . Application surfaceFeatureExtract Description Extracts and writes surface features to file \*---------------------------------------------------------------------------*/ #include "triangle.H" #include "triSurface.H" #include "argList.H" #include "Time.H" #include "surfaceFeatures.H" #include "featureEdgeMesh.H" #include "treeBoundBox.H" #include "meshTools.H" #include "OFstream.H" #include "triSurfaceMesh.H" #include "vtkSurfaceWriter.H" #include "triSurfaceFields.H" #include "unitConversion.H" #include "indexedOctree.H" #include "treeDataEdge.H" #include "buildCGALPolyhedron.H" #include "CGALPolyhedronRings.H" #include #include #include using namespace Foam; // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // void dumpBox(const treeBoundBox& bb, const fileName& fName) { OFstream str(fName); Info<< "Dumping bounding box " << bb << " as lines to obj file " << str.name() << endl; pointField boxPoints(bb.points()); forAll(boxPoints, i) { meshTools::writeOBJ(str, boxPoints[i]); } forAll(treeBoundBox::edges, i) { const edge& e = treeBoundBox::edges[i]; str<< "l " << e[0]+1 << ' ' << e[1]+1 << nl; } } // Deletes all edges inside/outside bounding box from set. void deleteBox ( const triSurface& surf, const treeBoundBox& bb, const bool removeInside, List& edgeStat ) { forAll(edgeStat, edgeI) { const point eMid = surf.edges()[edgeI].centre(surf.localPoints()); if (removeInside ? bb.contains(eMid) : !bb.contains(eMid)) { edgeStat[edgeI] = surfaceFeatures::NONE; } } } void drawHitProblem ( label fI, const triSurface& surf, const pointField& start, const pointField& faceCentres, const pointField& end, const List& hitInfo ) { Info<< nl << "# findLineAll did not hit its own face." << nl << "# fI " << fI << nl << "# start " << start[fI] << nl << "# f centre " << faceCentres[fI] << nl << "# end " << end[fI] << nl << "# hitInfo " << hitInfo << endl; meshTools::writeOBJ(Info, start[fI]); meshTools::writeOBJ(Info, faceCentres[fI]); meshTools::writeOBJ(Info, end[fI]); Info<< "l 1 2 3" << endl; meshTools::writeOBJ(Info, surf.points()[surf[fI][0]]); meshTools::writeOBJ(Info, surf.points()[surf[fI][1]]); meshTools::writeOBJ(Info, surf.points()[surf[fI][2]]); Info<< "f 4 5 6" << endl; forAll(hitInfo, hI) { label hFI = hitInfo[hI].index(); meshTools::writeOBJ(Info, surf.points()[surf[hFI][0]]); meshTools::writeOBJ(Info, surf.points()[surf[hFI][1]]); meshTools::writeOBJ(Info, surf.points()[surf[hFI][2]]); Info<< "f " << 3*hI + 7 << " " << 3*hI + 8 << " " << 3*hI + 9 << endl; } } scalarField curvature(const triSurface& surf) { scalarField k(surf.points().size(), 0); Polyhedron P; buildCGALPolyhedron convert(surf); P.delegate(convert); // Info<< "Created CGAL Polyhedron with " << label(P.size_of_vertices()) // << " vertices and " << label(P.size_of_facets()) // << " facets. " << endl; // The rest of this function adapted from // CGAL-3.7/examples/Jet_fitting_3/Mesh_estimation.cpp // Licensed under CGAL-3.7/LICENSE.FREE_USE // Copyright (c) 1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007 // Utrecht University (The Netherlands), ETH Zurich (Switzerland), Freie // Universitaet Berlin (Germany), INRIA Sophia-Antipolis (France), // Martin-Luther-University Halle-Wittenberg (Germany), Max-Planck-Institute // Saarbruecken (Germany), RISC Linz (Austria), and Tel-Aviv University // (Israel). All rights reserved. // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. // IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY // CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT // OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR // THE USE OR OTHER DEALINGS IN THE SOFTWARE. //Vertex property map, with std::map typedef std::map Vertex2int_map_type; typedef boost::associative_property_map< Vertex2int_map_type > Vertex_PM_type; typedef T_PolyhedralSurf_rings Poly_rings; typedef CGAL::Monge_via_jet_fitting Monge_via_jet_fitting; typedef Monge_via_jet_fitting::Monge_form Monge_form; std::vector in_points; //container for data points // default parameter values and global variables unsigned int d_fitting = 2; unsigned int d_monge = 2; unsigned int min_nb_points = (d_fitting + 1)*(d_fitting + 2)/2; //initialize the tag of all vertices to -1 Vertex_iterator vitb = P.vertices_begin(); Vertex_iterator vite = P.vertices_end(); Vertex2int_map_type vertex2props; Vertex_PM_type vpm(vertex2props); CGAL_For_all(vitb, vite) { put(vpm, &(*vitb), -1); } vite = P.vertices_end(); label vertI = 0; for (vitb = P.vertices_begin(); vitb != vite; vitb++) { //initialize Vertex* v = &(*vitb); //gather points around the vertex using rings // From: gather_fitting_points(v, in_points, vpm); { std::vector gathered; in_points.clear(); Poly_rings::collect_enough_rings(v, min_nb_points, gathered, vpm); //store the gathered points std::vector::iterator itb = gathered.begin(); std::vector::iterator ite = gathered.end(); CGAL_For_all(itb, ite) { in_points.push_back((*itb)->point()); } } //skip if the nb of points is to small if ( in_points.size() < min_nb_points ) { std::cerr << "not enough pts for fitting this vertex" << in_points.size() << std::endl; continue; } // perform the fitting Monge_via_jet_fitting monge_fit; Monge_form monge_form = monge_fit ( in_points.begin(), in_points.end(), d_fitting, d_monge ); // std::cout<< monge_form << std::endl; // std::cout<< "k1 " << monge_form.principal_curvatures(0) << std::endl; // std::cout<< "k2 " << monge_form.principal_curvatures(1) << std::endl; // std::vector::iterator itbp = in_points.begin(); // std::vector::iterator itep = in_points.end(); // std::cout << "in_points list : " << std::endl; // for (; itbp != itep; itbp++) // { // std::cout << *itbp << std::endl; // } // std::cout << "--- vertex " << vertI // << " : " << v->point() << std::endl // << "number of points used : " << in_points.size() // << std::endl; k[vertI++] = Foam::sqrt ( sqr(monge_form.principal_curvatures(0)) + sqr(monge_form.principal_curvatures(1)) ); } return k; } // Main program: int main(int argc, char *argv[]) { argList::addNote ( "extract and write surface features to file" ); argList::noParallel(); argList::validArgs.append("surface"); argList::validArgs.append("output set"); argList::addOption ( "includedAngle", "degrees", "construct feature set from included angle [0..180]" ); argList::addOption ( "set", "name", "use existing feature set from file" ); argList::addOption ( "minLen", "scalar", "remove features shorter than the specified cumulative length" ); argList::addOption ( "minElem", "int", "remove features with fewer than the specified number of edges" ); argList::addOption ( "subsetBox", "((x0 y0 z0)(x1 y1 z1))", "remove edges outside specified bounding box" ); argList::addOption ( "deleteBox", "((x0 y0 z0)(x1 y1 z1))", "remove edges within specified bounding box" ); argList::addBoolOption ( "writeObj", "write featureEdgeMesh obj files" ); argList::addOption ( "closeness", "scalar", "span to look for surface closeness" ); argList::addOption ( "featureProximity", "scalar", "distance to look for close features" ); argList::addBoolOption ( "writeVTK", "write surface property VTK files" ); # include "setRootCase.H" # include "createTime.H" Info<< "Feature line extraction is only valid on closed manifold surfaces." << endl; bool writeVTK = args.optionFound("writeVTK"); bool writeObj = args.optionFound("writeObj"); const fileName surfFileName = args[1]; const fileName outFileName = args[2]; Info<< "Surface : " << surfFileName << nl << "Output feature set : " << outFileName << nl << endl; fileName sFeatFileName = surfFileName.lessExt().name(); // Read // ~~~~ triSurface surf(surfFileName); Info<< "Statistics:" << endl; surf.writeStats(Info); Info<< endl; faceList faces(surf.size()); forAll(surf, fI) { faces[fI] = surf[fI].triFaceFace(); } // Either construct features from surface&featureangle or read set. // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ surfaceFeatures set(surf); if (args.optionFound("set")) { const fileName setName = args["set"]; Info<< "Reading existing feature set from file " << setName << endl; set = surfaceFeatures(surf, setName); } else if (args.optionFound("includedAngle")) { const scalar includedAngle = args.optionRead("includedAngle"); Info<< "Constructing feature set from included angle " << includedAngle << endl; set = surfaceFeatures(surf, includedAngle); // Info<< nl << "Writing initial features" << endl; // set.write("initial.fSet"); // set.writeObj("initial"); } else { FatalErrorIn(args.executable()) << "No initial feature set. Provide either one" << " of -set (to read existing set)" << nl << " or -includedAngle (to new set construct from angle)" << exit(FatalError); } Info<< nl << "Initial feature set:" << nl << " feature points : " << set.featurePoints().size() << nl << " feature edges : " << set.featureEdges().size() << nl << " of which" << nl << " region edges : " << set.nRegionEdges() << nl << " external edges : " << set.nExternalEdges() << nl << " internal edges : " << set.nInternalEdges() << nl << endl; // Trim set // ~~~~~~~~ scalar minLen = -GREAT; if (args.optionReadIfPresent("minLen", minLen)) { Info<< "Removing features of length < " << minLen << endl; } label minElem = 0; if (args.optionReadIfPresent("minElem", minElem)) { Info<< "Removing features with number of edges < " << minElem << endl; } // Trim away small groups of features if (minElem > 0 || minLen > 0) { set.trimFeatures(minLen, minElem); Info<< endl << "Removed small features" << endl; } // Subset // ~~~~~~ // Convert to marked edges, points List edgeStat(set.toStatus()); if (args.optionFound("subsetBox")) { treeBoundBox bb ( args.optionLookup("subsetBox")() ); Info<< "Removing all edges outside bb " << bb << endl; dumpBox(bb, "subsetBox.obj"); deleteBox ( surf, bb, false, edgeStat ); } else if (args.optionFound("deleteBox")) { treeBoundBox bb ( args.optionLookup("deleteBox")() ); Info<< "Removing all edges inside bb " << bb << endl; dumpBox(bb, "deleteBox.obj"); deleteBox ( surf, bb, true, edgeStat ); } surfaceFeatures newSet(surf); newSet.setFromStatus(edgeStat); Info<< endl << "Writing trimmed features to " << runTime.constant()/"featureEdgeMesh"/outFileName << endl; newSet.write(runTime.constant()/"featureEdgeMesh"/outFileName); // Info<< endl << "Writing edge objs." << endl; // newSet.writeObj("final"); Info<< nl << "Final feature set:" << nl << " feature points : " << newSet.featurePoints().size() << nl << " feature edges : " << newSet.featureEdges().size() << nl << " of which" << nl << " region edges : " << newSet.nRegionEdges() << nl << " external edges : " << newSet.nExternalEdges() << nl << " internal edges : " << newSet.nInternalEdges() << nl << endl; // Dummy trim operation to mark features labelList featureEdgeIndexing = newSet.trimFeatures(-GREAT, 0); scalarField surfacePtFeatureIndex(surf.points().size(), -1); forAll(newSet.featureEdges(), eI) { const edge& e = surf.edges()[newSet.featureEdges()[eI]]; surfacePtFeatureIndex[surf.meshPoints()[e.start()]] = featureEdgeIndexing[newSet.featureEdges()[eI]]; surfacePtFeatureIndex[surf.meshPoints()[e.end()]] = featureEdgeIndexing[newSet.featureEdges()[eI]]; } if (writeVTK) { vtkSurfaceWriter().write ( runTime.constant()/"triSurface", // outputDir sFeatFileName, // surfaceName surf.points(), faces, "surfacePtFeatureIndex", // fieldName surfacePtFeatureIndex, true, // isNodeValues true // verbose ); } // Extracting and writing a featureEdgeMesh Pout<< nl << "Writing featureEdgeMesh to constant/featureEdgeMesh." << endl; featureEdgeMesh feMesh ( IOobject ( sFeatFileName + ".featureEdgeMesh", runTime.constant(), "featureEdgeMesh", runTime, IOobject::NO_READ, IOobject::NO_WRITE ), newSet ); feMesh.write(); if (writeObj) { feMesh.writeObj(runTime.constant()/"featureEdgeMesh"/sFeatFileName); }; triSurfaceMesh searchSurf ( IOobject ( sFeatFileName + ".closeness", runTime.constant(), "featureEdgeMesh", runTime, IOobject::NO_READ, IOobject::NO_WRITE ), surf ); // Find close features Random rndGen(343267); treeBoundBox surfBB ( treeBoundBox(searchSurf.bounds()).extend(rndGen, 1e-4) ); surfBB.min() -= Foam::point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL); surfBB.max() += Foam::point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL); indexedOctree ftEdTree ( treeDataEdge ( false, surf.edges(), surf.localPoints(), newSet.featureEdges() ), surfBB, 8, // maxLevel 10, // leafsize 3.0 // duplicity ); // labelList nearPoints = ftEdTree.findBox // ( // treeBoundBox // ( // sPt - featureSearchSpan*Foam::vector::one, // sPt + featureSearchSpan*Foam::vector::one // ) // ); // Examine curvature, feature proximity and internal and external closeness. // Internal and external closeness // Prepare start and end points for intersection tests const vectorField& normals = searchSurf.faceNormals(); scalar span = searchSurf.bounds().mag(); args.optionReadIfPresent("closeness", span); scalar externalAngleTolerance = 10; scalar externalToleranceCosAngle = Foam::cos ( degToRad(180 - externalAngleTolerance) ); scalar internalAngleTolerance = 45; scalar internalToleranceCosAngle = Foam::cos ( degToRad(180 - internalAngleTolerance) ); Info<< "externalToleranceCosAngle: " << externalToleranceCosAngle << nl << "internalToleranceCosAngle: " << internalToleranceCosAngle << endl; // Info<< "span " << span << endl; pointField start = searchSurf.faceCentres() - span*normals; pointField end = searchSurf.faceCentres() + span*normals; const pointField& faceCentres = searchSurf.faceCentres(); List > allHitInfo; // Find all intersections (in order) searchSurf.findLineAll(start, end, allHitInfo); scalarField internalCloseness(start.size(), GREAT); scalarField externalCloseness(start.size(), GREAT); forAll(allHitInfo, fI) { const List& hitInfo = allHitInfo[fI]; if (hitInfo.size() < 1) { drawHitProblem(fI, surf, start, faceCentres, end, hitInfo); FatalErrorIn(args.executable()) << "findLineAll did not hit its own face." << exit(FatalError); } else if (hitInfo.size() == 1) { if (!hitInfo[0].hit()) { FatalErrorIn(args.executable()) << "findLineAll did not hit any face." << exit(FatalError); } else if (hitInfo[0].index() != fI) { drawHitProblem(fI, surf, start, faceCentres, end, hitInfo); FatalErrorIn(args.executable()) << "findLineAll did not hit its own face." << exit(FatalError); } } else { label ownHitI = -1; forAll(hitInfo, hI) { // Find the hit on the triangle that launched the ray if (hitInfo[hI].index() == fI) { ownHitI = hI; break; } } if (ownHitI < 0) { drawHitProblem(fI, surf, start, faceCentres, end, hitInfo); FatalErrorIn(args.executable()) << "findLineAll did not hit its own face." << exit(FatalError); } else if (ownHitI == 0) { // There are no internal hits, the first hit is the closest // external hit if ( (normals[fI] & normals[hitInfo[ownHitI + 1].index()]) < externalToleranceCosAngle ) { externalCloseness[fI] = mag ( faceCentres[fI] - hitInfo[ownHitI + 1].hitPoint() ); } } else if (ownHitI == hitInfo.size() - 1) { // There are no external hits, the last but one hit is the // closest internal hit if ( (normals[fI] & normals[hitInfo[ownHitI - 1].index()]) < internalToleranceCosAngle ) { internalCloseness[fI] = mag ( faceCentres[fI] - hitInfo[ownHitI - 1].hitPoint() ); } } else { if ( (normals[fI] & normals[hitInfo[ownHitI + 1].index()]) < externalToleranceCosAngle ) { externalCloseness[fI] = mag ( faceCentres[fI] - hitInfo[ownHitI + 1].hitPoint() ); } if ( (normals[fI] & normals[hitInfo[ownHitI - 1].index()]) < internalToleranceCosAngle ) { internalCloseness[fI] = mag ( faceCentres[fI] - hitInfo[ownHitI - 1].hitPoint() ); } } } } triSurfaceScalarField internalClosenessField ( IOobject ( sFeatFileName + ".internalCloseness", runTime.constant(), "featureEdgeMesh", runTime, IOobject::NO_READ, IOobject::NO_WRITE ), surf, dimLength, internalCloseness ); internalClosenessField.write(); triSurfaceScalarField externalClosenessField ( IOobject ( sFeatFileName + ".externalCloseness", runTime.constant(), "featureEdgeMesh", runTime, IOobject::NO_READ, IOobject::NO_WRITE ), surf, dimLength, externalCloseness ); externalClosenessField.write(); scalarField k = curvature(surf); // Modify the curvature values on feature edges and points to be zero. forAll(newSet.featureEdges(), fEI) { const edge& e = surf.edges()[newSet.featureEdges()[fEI]]; k[surf.meshPoints()[e.start()]] = 0.0; k[surf.meshPoints()[e.end()]] = 0.0; } triSurfacePointScalarField kField ( IOobject ( sFeatFileName + ".curvature", runTime.constant(), "featureEdgeMesh", runTime, IOobject::NO_READ, IOobject::NO_WRITE ), surf, dimLength, k ); kField.write(); if (writeVTK) { vtkSurfaceWriter().write ( runTime.constant()/"triSurface", // outputDir sFeatFileName, // surfaceName surf.points(), faces, "internalCloseness", // fieldName internalCloseness, false, // isNodeValues true // verbose ); vtkSurfaceWriter().write ( runTime.constant()/"triSurface", // outputDir sFeatFileName, // surfaceName surf.points(), faces, "externalCloseness", // fieldName externalCloseness, false, // isNodeValues true // verbose ); vtkSurfaceWriter().write ( runTime.constant()/"triSurface", // outputDir sFeatFileName, // surfaceName surf.points(), faces, "curvature", // fieldName k, true, // isNodeValues true // verbose ); } return 0; } // ************************************************************************* //