/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2012-2014 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
\*---------------------------------------------------------------------------*/
#include "primitiveMeshTools.H"
#include "syncTools.H"
#include "pyramidPointFaceRef.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
Foam::scalar Foam::primitiveMeshTools::faceSkewness
(
const primitiveMesh& mesh,
const pointField& p,
const vectorField& fCtrs,
const vectorField& fAreas,
const label faceI,
const point& ownCc,
const point& neiCc
)
{
vector Cpf = fCtrs[faceI] - ownCc;
vector d = neiCc - ownCc;
// Skewness vector
vector sv =
Cpf
- ((fAreas[faceI] & Cpf)/((fAreas[faceI] & d) + SMALL))*d;
vector svHat = sv/(mag(sv) + VSMALL);
// Normalisation distance calculated as the approximate distance
// from the face centre to the edge of the face in the direction
// of the skewness
scalar fd = 0.2*mag(d) + VSMALL;
const face& f = mesh.faces()[faceI];
forAll(f, pi)
{
fd = max(fd, mag(svHat & (p[f[pi]] - fCtrs[faceI])));
}
// Normalised skewness
return mag(sv)/fd;
}
Foam::scalar Foam::primitiveMeshTools::boundaryFaceSkewness
(
const primitiveMesh& mesh,
const pointField& p,
const vectorField& fCtrs,
const vectorField& fAreas,
const label faceI,
const point& ownCc
)
{
vector Cpf = fCtrs[faceI] - ownCc;
vector normal = fAreas[faceI];
normal /= mag(normal) + VSMALL;
vector d = normal*(normal & Cpf);
// Skewness vector
vector sv =
Cpf
- ((fAreas[faceI] & Cpf)/((fAreas[faceI] & d) + VSMALL))*d;
vector svHat = sv/(mag(sv) + VSMALL);
// Normalisation distance calculated as the approximate distance
// from the face centre to the edge of the face in the direction
// of the skewness
scalar fd = 0.4*mag(d) + VSMALL;
const face& f = mesh.faces()[faceI];
forAll(f, pi)
{
fd = max(fd, mag(svHat & (p[f[pi]] - fCtrs[faceI])));
}
// Normalised skewness
return mag(sv)/fd;
}
Foam::scalar Foam::primitiveMeshTools::faceOrthogonality
(
const point& ownCc,
const point& neiCc,
const vector& s
)
{
vector d = neiCc - ownCc;
return (d & s)/(mag(d)*mag(s) + VSMALL);
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::tmp Foam::primitiveMeshTools::faceOrthogonality
(
const primitiveMesh& mesh,
const vectorField& areas,
const vectorField& cc
)
{
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
tmp tortho(new scalarField(mesh.nInternalFaces()));
scalarField& ortho = tortho();
// Internal faces
forAll(nei, faceI)
{
ortho[faceI] = faceOrthogonality
(
cc[own[faceI]],
cc[nei[faceI]],
areas[faceI]
);
}
return tortho;
}
Foam::tmp Foam::primitiveMeshTools::faceSkewness
(
const primitiveMesh& mesh,
const pointField& p,
const vectorField& fCtrs,
const vectorField& fAreas,
const vectorField& cellCtrs
)
{
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
tmp tskew(new scalarField(mesh.nFaces()));
scalarField& skew = tskew();
forAll(nei, faceI)
{
skew[faceI] = faceSkewness
(
mesh,
p,
fCtrs,
fAreas,
faceI,
cellCtrs[own[faceI]],
cellCtrs[nei[faceI]]
);
}
// Boundary faces: consider them to have only skewness error.
// (i.e. treat as if mirror cell on other side)
for (label faceI = mesh.nInternalFaces(); faceI < mesh.nFaces(); faceI++)
{
skew[faceI] = boundaryFaceSkewness
(
mesh,
p,
fCtrs,
fAreas,
faceI,
cellCtrs[own[faceI]]
);
}
return tskew;
}
void Foam::primitiveMeshTools::facePyramidVolume
(
const primitiveMesh& mesh,
const pointField& points,
const vectorField& ctrs,
scalarField& ownPyrVol,
scalarField& neiPyrVol
)
{
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const faceList& f = mesh.faces();
ownPyrVol.setSize(mesh.nFaces());
neiPyrVol.setSize(mesh.nInternalFaces());
forAll(f, faceI)
{
// Create the owner pyramid
ownPyrVol[faceI] = -pyramidPointFaceRef
(
f[faceI],
ctrs[own[faceI]]
).mag(points);
if (mesh.isInternalFace(faceI))
{
// Create the neighbour pyramid - it will have positive volume
neiPyrVol[faceI] = pyramidPointFaceRef
(
f[faceI],
ctrs[nei[faceI]]
).mag(points);
}
}
}
void Foam::primitiveMeshTools::cellClosedness
(
const primitiveMesh& mesh,
const Vector