/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2019-2020 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
\*---------------------------------------------------------------------------*/
#include "surfaceDistance.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace functionObjects
{
defineTypeNameAndDebug(surfaceDistance, 0);
addToRunTimeSelectionTable(functionObject, surfaceDistance, dictionary);
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::functionObjects::surfaceDistance::surfaceDistance
(
const word& name,
const Time& runTime,
const dictionary& dict
)
:
fvMeshFunctionObject(name, runTime, dict)
{
read(dict);
volScalarField* procFieldPtr
(
new volScalarField
(
IOobject
(
"surfaceDistance",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh_,
dimensionedScalar(dimLength, Zero)
)
);
mesh_.objectRegistry::store(procFieldPtr);
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::functionObjects::surfaceDistance::read
(
const dictionary& dict
)
{
fvMeshFunctionObject::read(dict);
doCells_ = dict.getOrDefault("calculateCells", true);
geomPtr_.reset(nullptr);
geomPtr_.reset
(
new searchableSurfaces
(
IOobject
(
"abc", // dummy name
mesh_.time().constant(), // directory
"triSurface", // instance
mesh_.time(), // registry
IOobject::MUST_READ,
IOobject::NO_WRITE
),
dict.subDict("geometry"),
true // allow single-region shortcut
)
);
return true;
}
bool Foam::functionObjects::surfaceDistance::execute()
{
volScalarField& distance = mesh_.lookupObjectRef
(
"surfaceDistance"
);
volScalarField::Boundary& bfld = distance.boundaryFieldRef();
forAll(bfld, patchi)
{
if (!polyPatch::constraintType(bfld[patchi].patch().type()))
{
const pointField& fc = mesh_.C().boundaryField()[patchi];
labelList surfaces;
List nearestInfo;
geomPtr_().findNearest
(
fc,
scalarField(fc.size(), GREAT),
surfaces,
nearestInfo
);
scalarField dist(fc.size());
forAll(nearestInfo, i)
{
dist[i] = mag(nearestInfo[i].hitPoint()-fc[i]);
}
bfld[patchi] == dist;
}
}
if (doCells_)
{
const pointField& cc = mesh_.C();
labelList surfaces;
List nearestInfo;
geomPtr_().findNearest
(
cc,
scalarField(cc.size(), GREAT),
surfaces,
nearestInfo
);
forAll(nearestInfo, celli)
{
distance[celli] = mag(nearestInfo[celli].hitPoint()-cc[celli]);
}
}
distance.correctBoundaryConditions();
return true;
}
bool Foam::functionObjects::surfaceDistance::write()
{
Log << " functionObjects::" << type() << " " << name()
<< " writing distance-to-surface field" << endl;
const volScalarField& distance =
mesh_.lookupObject("surfaceDistance");
// volScalarField::Boundary& bfld = distance.boundaryFieldRef();
// forAll(bfld, patchi)
// {
// if (!polyPatch::constraintType(bfld[patchi].patch().type()))
// {
// const pointField& fc = mesh_.C().boundaryField()[patchi];
//
// labelList surfaces;
// List nearestInfo;
// geomPtr_().findNearest
// (
// fc,
// scalarField(fc.size(), GREAT),
// surfaces,
// nearestInfo
// );
//
// scalarField dist(fc.size());
// forAll(nearestInfo, i)
// {
// dist[i] = mag(nearestInfo[i].hitPoint()-fc[i]);
// }
// bfld[patchi] == dist;
// }
// }
//
// if (doCells_)
// {
// const pointField& cc = mesh_.C();
//
// labelList surfaces;
// List nearestInfo;
// geomPtr_().findNearest
// (
// cc,
// scalarField(cc.size(), GREAT),
// surfaces,
// nearestInfo
// );
//
// forAll(nearestInfo, celli)
// {
// distance[celli] = mag(nearestInfo[celli].hitPoint()-cc[celli]);
// }
// }
// distance.correctBoundaryConditions();
distance.write();
return true;
}
// ************************************************************************* //