/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | www.openfoam.com \\/ M anipulation | ------------------------------------------------------------------------------- Copyright (C) 2011-2016 OpenFOAM Foundation Copyright (C) 2015-2022 OpenCFD Ltd. ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM. If not, see . \*---------------------------------------------------------------------------*/ #include "wallBoundedStreamLine.H" #include "wallBoundedStreamLineParticleCloud.H" #include "sampledSet.H" #include "faceSet.H" #include "addToRunTimeSelectionTable.H" // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // namespace Foam { namespace functionObjects { defineTypeNameAndDebug(wallBoundedStreamLine, 0); addToRunTimeSelectionTable ( functionObject, wallBoundedStreamLine, dictionary ); } } // * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * // Foam::Tuple2 Foam::functionObjects::wallBoundedStreamLine::findNearestTet ( const bitSet& isWallPatch, const point& seedPt, const label celli ) const { const cell& cFaces = mesh_.cells()[celli]; label minFacei = -1; label minTetPti = -1; scalar minDistSqr = sqr(GREAT); point nearestPt(GREAT, GREAT, GREAT); for (label facei : cFaces) { if (isWallPatch[facei]) { const face& f = mesh_.faces()[facei]; const label fp0 = mesh_.tetBasePtIs()[facei]; const point& basePoint = mesh_.points()[f[fp0]]; label fp = f.fcIndex(fp0); for (label i = 2; i < f.size(); i++) { const point& thisPoint = mesh_.points()[f[fp]]; const label nextFp = f.fcIndex(fp); const point& nextPoint = mesh_.points()[f[nextFp]]; const triPointRef tri(basePoint, thisPoint, nextPoint); //const scalar d2 = magSqr(tri.centre() - seedPt); const pointHit nearInfo(tri.nearestPoint(seedPt)); const scalar d2 = nearInfo.distance(); if (d2 < minDistSqr) { nearestPt = nearInfo.point(); minDistSqr = d2; minFacei = facei; minTetPti = i-1; } fp = nextFp; } } } // Return tet and nearest point on wall triangle return Tuple2 ( tetIndices ( celli, minFacei, minTetPti ), nearestPt ); } Foam::point Foam::functionObjects::wallBoundedStreamLine::pushIn ( const triPointRef& tri, const point& pt ) const { //pointHit nearPt(tri.nearestPoint(pt)); //if (nearPt.distance() > ROOTSMALL) //{ // FatalErrorInFunction << "tri:" << tri // << " seed:" << pt << exit(FatalError); //} return (1.0 - ROOTSMALL)*pt + ROOTSMALL*tri.centre(); } void Foam::functionObjects::wallBoundedStreamLine::track() { // Determine the 'wall' patches // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // These are the faces that need to be followed autoPtr boundaryPatch(wallPatch()); bitSet isWallPatch(mesh_.nFaces(), boundaryPatch().addressing()); // Find nearest wall particle for the seedPoints // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ wallBoundedStreamLineParticleCloud particles ( mesh_, Foam::zero{}, cloudName_ ); { // Get the seed points // ~~~~~~~~~~~~~~~~~~~ const sampledSet& seedPoints = sampledSetPoints(); forAll(seedPoints, seedi) { const label celli = seedPoints.cells()[seedi]; if (celli != -1) { const point& seedPt = seedPoints[seedi]; Tuple2 nearestId ( findNearestTet(isWallPatch, seedPt, celli) ); const tetIndices& ids = nearestId.first(); if (ids.face() != -1 && isWallPatch[ids.face()]) { //Pout<< "Seeding particle :" << nl // << " seedPt:" << seedPt << nl // << " face :" << ids.face() << nl // << " at :" << mesh_.faceCentres()[ids.face()] // << nl // << " cell :" << mesh_.cellCentres()[ids.cell()] // << nl << endl; particles.addParticle ( new wallBoundedStreamLineParticle ( mesh_, // Perturb seed point to be inside triangle pushIn(ids.faceTri(mesh_), nearestId.second()), ids.cell(), ids.face(), // tetFace ids.tetPt(), -1, // not on a mesh edge -1, // not on a diagonal edge (trackDir_ == trackDirType::FORWARD), // forward? lifeTime_ // lifetime ) ); if (trackDir_ == trackDirType::BIDIRECTIONAL) { // Additional particle for other half of track particles.addParticle ( new wallBoundedStreamLineParticle ( mesh_, // Perturb seed point to be inside triangle pushIn(ids.faceTri(mesh_), nearestId.second()), ids.cell(), ids.face(), // tetFace ids.tetPt(), -1, // not on a mesh edge -1, // not on a diagonal edge true, // forward lifeTime_ // lifetime ) ); } } else { Pout<< type() << " : ignoring seed " << seedPt << " since not in wall cell." << endl; } } } } const label nSeeds = returnReduce(particles.size(), sumOp