/* * Copyright 2003, Regents of the University of Minnesota * * cepic.c * * This file contains the driving routine for contact/impact simulations * for EPIC meshes * * Started 4/12/03 * George * * $Id: cepic.c,v 1.15 2003/05/03 16:10:48 karypis Exp $ * */ #include #define Flip_int32(type) (((type >>24) & 0x000000ff) | \ ((type >> 8) & 0x0000ff00) | \ ((type << 8) & 0x00ff0000) | \ ((type <<24) & 0xff000000) ) #define Flip_int64(type) (((type >>56) & 0x00000000000000ff) | \ ((type >>40) & 0x000000000000ff00) | \ ((type >>24) & 0x0000000000ff0000) | \ ((type >>8) & 0x00000000ff000000) | \ ((type <<8) & 0x000000ff00000000) | \ ((type <<24) & 0x0000ff0000000000) | \ ((type <<40) & 0x00ff000000000000) | \ ((type <<56) & 0xff00000000000000)) /************************************************************************* * Let the game begin **************************************************************************/ main(int argc, char *argv[]) { idxtype i, j, k, istep, options[10], nn, ne, fstep, lstep, nparts, nboxes, u[3], dim, nsplit, flags=0, NSKIP=1; char filename[256]; idxtype *mien, *mrng, *part, *sflag; double *mxyz, *bxyz; idxtype *xadj, *adjncy, *cntptr, *cntind; idxtype numflag = 0, wgtflag = 0, edgecut, etype=2; void *cinfo=NULL; FILE *fpin; long long int *ltmp; if (argc <= 6) { mfprintf(stderr, "Usage: %s [flags] [NSKIP]\n", argv[0]); exit(0); } nn = atoi(argv[1]); ne = atoi(argv[2]); fstep = atoi(argv[3]); lstep = atoi(argv[4]); nparts = atoi(argv[5]); if (argc > 6) flags = atoi(argv[6]); if (argc > 7) NSKIP = atoi(argv[7]); mprintf("\n\n------------------------------------------------------------------------------------------\n"); mprintf("Reading nn: %D, ne: %D, fstep: %D, lstep: %D, nparts: %D\n", nn, ne, fstep, lstep, nparts); mien = idxmalloc(4*ne, "main: mien"); mxyz = gk_dmalloc(3*nn, "main: mxyz"); mrng = idxmalloc(4*ne, "main: mrng"); bxyz = gk_dmalloc(6*ne*4, "main: bxyz"); part = idxmalloc(nn, "main: part"); sflag = idxmalloc(nn, "main: sflag"); xadj = idxmalloc(nn+1, "main: xadj"); adjncy = idxmalloc(50*nn, "main: adjncy"); /*======================================================================== * Read the initial mesh and setup the graph and contact information *========================================================================*/ msprintf(filename, "mien.%04D", fstep); fpin = GKfopen(filename, "rb", "main: mien"); fread(mien, sizeof(int), 4*ne, fpin); for (i=0; i<4*ne; i++) mien[i] = Flip_int32(mien[i]); GKfclose(fpin); /*======================================================================== * Create the nodal graph *========================================================================*/ numflag = mien[idxargmin(4*ne, mien)]; METIS_MeshToNodal(&ne, &nn, mien, &etype, &numflag, xadj, adjncy); /*======================================================================== * Get into the loop in which you go over the different configurations *========================================================================*/ for (k=0, istep=fstep; istep<=lstep; istep++, k++) { msprintf(filename, "mxyz.%04D", istep); mprintf("Reading %s...............................................................\n", filename); fpin = GKfopen(filename, "rb", "main: mxyz"); fread(mxyz, sizeof(double), 3*nn, fpin); for (i=0; i<3*nn; i++) { ltmp = (long long int *)(mxyz+i); *ltmp = Flip_int64(*ltmp); } GKfclose(fpin); msprintf(filename, "mrng.%04D", istep); fpin = GKfopen(filename, "rb", "main: mrng"); fread(mrng, sizeof(int), 4*ne, fpin); for (i=0; i<4*ne; i++) mrng[i] = Flip_int32(mrng[i]); GKfclose(fpin); /* Determine which nodes are in the surface */ iset(nn, 0, sflag); for (i=0; i 0) { /* 1, 2, 3 */ sflag[mien[4*i+0]-1] = 1; sflag[mien[4*i+1]-1] = 1; sflag[mien[4*i+2]-1] = 1; } if (mrng[4*i+1] > 0) { /* 1, 2, 4 */ sflag[mien[4*i+0]-1] = 1; sflag[mien[4*i+1]-1] = 1; sflag[mien[4*i+3]-1] = 1; } if (mrng[4*i+2] > 0) { /* 2, 3, 4 */ sflag[mien[4*i+1]-1] = 1; sflag[mien[4*i+2]-1] = 1; sflag[mien[4*i+3]-1] = 1; } if (mrng[4*i+3] > 0) { /* 1, 3, 4 */ sflag[mien[4*i+0]-1] = 1; sflag[mien[4*i+2]-1] = 1; sflag[mien[4*i+3]-1] = 1; } } mprintf("Contact Nodes: %D of %D\n", isum(nn, sflag), nn); /* Compute/Update the partitioning */ if (k%NSKIP == 0) { if (cinfo != NULL) METIS_FreeContactInfo(cinfo); options[0] = 0; cinfo = METIS_PartGraphForContact(&nn, xadj, adjncy, mxyz, sflag, &numflag, &nparts, options, &edgecut, part); for (i=0; i 0) { /* 1, 2, 3 */ u[0] = mien[4*i+0]-1; u[1] = mien[4*i+1]-1; u[2] = mien[4*i+2]-1; bxyz[6*nboxes+0] = bxyz[6*nboxes+3] = mxyz[3*u[0]+0]; bxyz[6*nboxes+1] = bxyz[6*nboxes+4] = mxyz[3*u[0]+1]; bxyz[6*nboxes+2] = bxyz[6*nboxes+5] = mxyz[3*u[0]+2]; for (j=1; j<3; j++) { for (dim=0; dim<3; dim++) { bxyz[6*nboxes+dim] = (bxyz[6*nboxes+dim] > mxyz[3*u[j]+dim] ? mxyz[3*u[j]+dim] : bxyz[6*nboxes+dim]); bxyz[6*nboxes+3+dim] = (bxyz[6*nboxes+3+dim] < mxyz[3*u[j]+dim] ? mxyz[3*u[j]+dim] : bxyz[6*nboxes+3+dim]); } } nboxes++; if (part[u[0]] != part[u[1]] || part[u[0]] != part[u[2]]) nsplit++; } if (mrng[4*i+1] > 0) { /* 1, 2, 4 */ u[0] = mien[4*i+0]-1; u[1] = mien[4*i+1]-1; u[2] = mien[4*i+3]-1; bxyz[6*nboxes+0] = bxyz[6*nboxes+3] = mxyz[3*u[0]+0]; bxyz[6*nboxes+1] = bxyz[6*nboxes+4] = mxyz[3*u[0]+1]; bxyz[6*nboxes+2] = bxyz[6*nboxes+5] = mxyz[3*u[0]+2]; for (j=1; j<3; j++) { for (dim=0; dim<3; dim++) { bxyz[6*nboxes+dim] = (bxyz[6*nboxes+dim] > mxyz[3*u[j]+dim] ? mxyz[3*u[j]+dim] : bxyz[6*nboxes+dim]); bxyz[6*nboxes+3+dim] = (bxyz[6*nboxes+3+dim] < mxyz[3*u[j]+dim] ? mxyz[3*u[j]+dim] : bxyz[6*nboxes+3+dim]); } } nboxes++; if (part[u[0]] != part[u[1]] || part[u[0]] != part[u[2]]) nsplit++; } if (mrng[4*i+2] > 0) { /* 2, 3, 4 */ u[0] = mien[4*i+1]-1; u[1] = mien[4*i+2]-1; u[2] = mien[4*i+3]-1; bxyz[6*nboxes+0] = bxyz[6*nboxes+3] = mxyz[3*u[0]+0]; bxyz[6*nboxes+1] = bxyz[6*nboxes+4] = mxyz[3*u[0]+1]; bxyz[6*nboxes+2] = bxyz[6*nboxes+5] = mxyz[3*u[0]+2]; for (j=1; j<3; j++) { for (dim=0; dim<3; dim++) { bxyz[6*nboxes+dim] = (bxyz[6*nboxes+dim] > mxyz[3*u[j]+dim] ? mxyz[3*u[j]+dim] : bxyz[6*nboxes+dim]); bxyz[6*nboxes+3+dim] = (bxyz[6*nboxes+3+dim] < mxyz[3*u[j]+dim] ? mxyz[3*u[j]+dim] : bxyz[6*nboxes+3+dim]); } } nboxes++; if (part[u[0]] != part[u[1]] || part[u[0]] != part[u[2]]) nsplit++; } if (mrng[4*i+3] > 0) { /* 1, 3, 4 */ u[0] = mien[4*i+0]-1; u[1] = mien[4*i+2]-1; u[2] = mien[4*i+3]-1; bxyz[6*nboxes+0] = bxyz[6*nboxes+3] = mxyz[3*u[0]+0]; bxyz[6*nboxes+1] = bxyz[6*nboxes+4] = mxyz[3*u[0]+1]; bxyz[6*nboxes+2] = bxyz[6*nboxes+5] = mxyz[3*u[0]+2]; for (j=1; j<3; j++) { for (dim=0; dim<3; dim++) { bxyz[6*nboxes+dim] = (bxyz[6*nboxes+dim] > mxyz[3*u[j]+dim] ? mxyz[3*u[j]+dim] : bxyz[6*nboxes+dim]); bxyz[6*nboxes+3+dim] = (bxyz[6*nboxes+3+dim] < mxyz[3*u[j]+dim] ? mxyz[3*u[j]+dim] : bxyz[6*nboxes+3+dim]); } } nboxes++; if (part[u[0]] != part[u[1]] || part[u[0]] != part[u[2]]) nsplit++; } } METIS_FindContacts(cinfo, &nboxes, bxyz, &nparts, &cntptr, &cntind); mprintf("Contacting Elements: %D Indices: %D Nsplit: %D\n", nboxes, cntptr[nboxes]-nboxes, nsplit); gk_free((void **)&cntptr, &cntind, LTERM); } }