/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation | Copyright (C) 2018-2019 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
\*---------------------------------------------------------------------------*/
#include "GeometricFieldReuseFunctions.H"
#define TEMPLATE \
template class PatchField, class GeoMesh>
#include "GeometricFieldFunctionsM.C"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * * Global functions * * * * * * * * * * * * * //
template class PatchField, class GeoMesh>
void component
(
GeometricField
<
typename GeometricField::cmptType,
PatchField,
GeoMesh
>& gcf,
const GeometricField& gf,
const direction d
)
{
component(gcf.primitiveFieldRef(), gf.primitiveField(), d);
component(gcf.boundaryFieldRef(), gf.boundaryField(), d);
gcf.oriented() = gf.oriented();
}
template class PatchField, class GeoMesh>
void T
(
GeometricField& gf,
const GeometricField& gf1
)
{
T(gf.primitiveFieldRef(), gf1.primitiveField());
T(gf.boundaryFieldRef(), gf1.boundaryField());
gf.oriented() = gf1.oriented();
}
template
<
class Type,
template class PatchField,
class GeoMesh,
direction r
>
void pow
(
GeometricField::type, PatchField, GeoMesh>& gf,
const GeometricField& gf1
)
{
pow(gf.primitiveFieldRef(), gf1.primitiveField(), r);
pow(gf.boundaryFieldRef(), gf1.boundaryField(), r);
gf.oriented() = pow(gf1.oriented(), r);
}
template
<
class Type,
template class PatchField,
class GeoMesh,
direction r
>
tmp::type, PatchField, GeoMesh>>
pow
(
const GeometricField& gf,
typename powProduct::type
)
{
typedef typename powProduct::type powProductType;
auto tres =
tmp>::New
(
IOobject
(
"pow(" + gf.name() + ',' + name(r) + ')',
gf.instance(),
gf.db(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
gf.mesh(),
pow(gf.dimensions(), r)
);
pow(tres.ref(), gf);
return tres;
}
template
<
class Type,
template class PatchField,
class GeoMesh,
direction r
>
tmp::type, PatchField, GeoMesh>>
pow
(
const tmp>& tgf,
typename powProduct::type
)
{
typedef typename powProduct::type powProductType;
const GeometricField& gf = tgf();
auto tres =
tmp>::New
(
IOobject
(
"pow(" + gf.name() + ',' + name(r) + ')',
gf.instance(),
gf.db(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
gf.mesh(),
pow(gf.dimensions(), r)
);
pow(tres.ref(), gf);
tgf.clear();
return tres;
}
template class PatchField, class GeoMesh>
void sqr
(
GeometricField
::type, PatchField, GeoMesh>& gf,
const GeometricField& gf1
)
{
sqr(gf.primitiveFieldRef(), gf1.primitiveField());
sqr(gf.boundaryFieldRef(), gf1.boundaryField());
gf.oriented() = sqr(gf1.oriented());
}
template class PatchField, class GeoMesh>
tmp
<
GeometricField
<
typename outerProduct::type,
PatchField,
GeoMesh
>
>
sqr(const GeometricField& gf)
{
typedef typename outerProduct::type outerProductType;
auto tres =
tmp>::New
(
IOobject
(
"sqr(" + gf.name() + ')',
gf.instance(),
gf.db(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
gf.mesh(),
sqr(gf.dimensions())
);
sqr(tres.ref(), gf);
return tres;
}
template class PatchField, class GeoMesh>
tmp
<
GeometricField
<
typename outerProduct::type,
PatchField,
GeoMesh
>
>
sqr(const tmp>& tgf)
{
typedef typename outerProduct::type outerProductType;
const GeometricField& gf = tgf();
auto tres =
tmp>::New
(
IOobject
(
"sqr(" + gf.name() + ')',
gf.instance(),
gf.db(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
gf.mesh(),
sqr(gf.dimensions())
);
sqr(tres.ref(), gf);
tgf.clear();
return tres;
}
template class PatchField, class GeoMesh>
void magSqr
(
GeometricField& gsf,
const GeometricField& gf
)
{
magSqr(gsf.primitiveFieldRef(), gf.primitiveField());
magSqr(gsf.boundaryFieldRef(), gf.boundaryField());
gsf.oriented() = magSqr(gf.oriented());
}
template class PatchField, class GeoMesh>
tmp> magSqr
(
const GeometricField& gf
)
{
auto tres =
tmp>::New
(
IOobject
(
"magSqr(" + gf.name() + ')',
gf.instance(),
gf.db(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
gf.mesh(),
sqr(gf.dimensions())
);
magSqr(tres.ref(), gf);
return tres;
}
template class PatchField, class GeoMesh>
tmp> magSqr
(
const tmp>& tgf
)
{
const GeometricField& gf = tgf();
auto tres =
tmp>::New
(
IOobject
(
"magSqr(" + gf.name() + ')',
gf.instance(),
gf.db(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
gf.mesh(),
sqr(gf.dimensions())
);
magSqr(tres.ref(), gf);
tgf.clear();
return tres;
}
template class PatchField, class GeoMesh>
void mag
(
GeometricField& gsf,
const GeometricField& gf
)
{
mag(gsf.primitiveFieldRef(), gf.primitiveField());
mag(gsf.boundaryFieldRef(), gf.boundaryField());
gsf.oriented() = mag(gf.oriented());
}
template class PatchField, class GeoMesh>
tmp> mag
(
const GeometricField& gf
)
{
auto tres =
tmp>::New
(
IOobject
(
"mag(" + gf.name() + ')',
gf.instance(),
gf.db(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
gf.mesh(),
gf.dimensions()
);
mag(tres.ref(), gf);
return tres;
}
template class PatchField, class GeoMesh>
tmp> mag
(
const tmp>& tgf
)
{
const GeometricField& gf = tgf();
auto tres =
tmp>::New
(
IOobject
(
"mag(" + gf.name() + ')',
gf.instance(),
gf.db(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
gf.mesh(),
gf.dimensions()
);
mag(tres.ref(), gf);
tgf.clear();
return tres;
}
template class PatchField, class GeoMesh>
void cmptAv
(
GeometricField
<
typename GeometricField::cmptType,
PatchField,
GeoMesh
>& gcf,
const GeometricField& gf
)
{
cmptAv(gcf.primitiveFieldRef(), gf.primitiveField());
cmptAv(gcf.boundaryFieldRef(), gf.boundaryField());
gcf.oriented() = cmptAv(gf.oriented());
}
template class PatchField, class GeoMesh>
tmp
<
GeometricField
<
typename GeometricField::cmptType,
PatchField,
GeoMesh
>
>
cmptAv(const GeometricField& gf)
{
typedef typename GeometricField::cmptType
cmptType;
auto tres =
tmp>::New
(
IOobject
(
"cmptAv(" + gf.name() + ')',
gf.instance(),
gf.db(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
gf.mesh(),
gf.dimensions()
);
cmptAv(tres.ref(), gf);
return tres;
}
template class PatchField, class GeoMesh>
tmp
<
GeometricField
<
typename GeometricField::cmptType,
PatchField,
GeoMesh
>
>
cmptAv(const tmp>& tgf)
{
typedef typename GeometricField::cmptType
cmptType;
const GeometricField& gf = tgf();
auto tres =
tmp>::New
(
IOobject
(
"cmptAv(" + gf.name() + ')',
gf.instance(),
gf.db(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
gf.mesh(),
gf.dimensions()
);
cmptAv(tres.ref(), gf);
tgf.clear();
return tres;
}
#define UNARY_REDUCTION_FUNCTION_WITH_BOUNDARY(returnType, func, binaryOp) \
\
template class PatchField, class GeoMesh> \
dimensioned func \
( \
const GeometricField& gf \
) \
{ \
return dimensioned \
( \
#func "(" + gf.name() + ')', \
gf.dimensions(), \
returnReduce \
( \
Foam::func \
( \
Foam::func(gf.primitiveField()), \
Foam::func(gf.boundaryField()) \
), \
binaryOp() \
) \
); \
} \
\
template class PatchField, class GeoMesh> \
dimensioned func \
( \
const tmp>& tgf1 \
) \
{ \
dimensioned res = func(tgf1()); \
tgf1.clear(); \
return res; \
}
UNARY_REDUCTION_FUNCTION_WITH_BOUNDARY(Type, max, maxOp)
UNARY_REDUCTION_FUNCTION_WITH_BOUNDARY(Type, min, minOp)
UNARY_REDUCTION_FUNCTION_WITH_BOUNDARY(MinMax, minMax, minMaxOp)
UNARY_REDUCTION_FUNCTION_WITH_BOUNDARY(scalarMinMax, minMaxMag, minMaxMagOp)
#undef UNARY_REDUCTION_FUNCTION_WITH_BOUNDARY
#define UNARY_REDUCTION_FUNCTION(returnType, func, gFunc) \
\
template class PatchField, class GeoMesh> \
dimensioned func \
( \
const GeometricField& gf \
) \
{ \
return dimensioned \
( \
#func "(" + gf.name() + ')', \
gf.dimensions(), \
gFunc(gf.primitiveField()) \
); \
} \
\
template class PatchField, class GeoMesh> \
dimensioned func \
( \
const tmp>& tgf1 \
) \
{ \
dimensioned res = func(tgf1()); \
tgf1.clear(); \
return res; \
}
UNARY_REDUCTION_FUNCTION(Type, sum, gSum)
UNARY_REDUCTION_FUNCTION(scalar, sumMag, gSumMag)
UNARY_REDUCTION_FUNCTION(Type, average, gAverage)
#undef UNARY_REDUCTION_FUNCTION
BINARY_FUNCTION(Type, Type, Type, max)
BINARY_FUNCTION(Type, Type, Type, min)
BINARY_FUNCTION(Type, Type, Type, cmptMultiply)
BINARY_FUNCTION(Type, Type, Type, cmptDivide)
BINARY_TYPE_FUNCTION(Type, Type, Type, max)
BINARY_TYPE_FUNCTION(Type, Type, Type, min)
BINARY_TYPE_FUNCTION(Type, Type, Type, cmptMultiply)
BINARY_TYPE_FUNCTION(Type, Type, Type, cmptDivide)
// * * * * * * * * * * * * * * * Global operators * * * * * * * * * * * * * //
UNARY_OPERATOR(Type, Type, -, negate, transform)
BINARY_OPERATOR(Type, Type, scalar, *, '*', multiply)
BINARY_OPERATOR(Type, scalar, Type, *, '*', multiply)
BINARY_OPERATOR(Type, Type, scalar, /, '|', divide)
BINARY_TYPE_OPERATOR_SF(Type, scalar, Type, *, '*', multiply)
BINARY_TYPE_OPERATOR_FS(Type, Type, scalar, *, '*', multiply)
BINARY_TYPE_OPERATOR_FS(Type, Type, scalar, /, '|', divide)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#define PRODUCT_OPERATOR(product, op, opFunc) \
\
template \
class PatchField, class GeoMesh> \
void opFunc \
( \
GeometricField \
::type, PatchField, GeoMesh>& gf, \
const GeometricField& gf1, \
const GeometricField& gf2 \
) \
{ \
Foam::opFunc \
( \
gf.primitiveFieldRef(), \
gf1.primitiveField(), \
gf2.primitiveField() \
); \
Foam::opFunc \
( \
gf.boundaryFieldRef(), \
gf1.boundaryField(), \
gf2.boundaryField() \
); \
\
gf.oriented() = gf1.oriented() op gf2.oriented(); \
} \
\
template \
class PatchField, class GeoMesh> \
tmp \
< \
GeometricField::type, PatchField, GeoMesh> \
> \
operator op \
( \
const GeometricField& gf1, \
const GeometricField& gf2 \
) \
{ \
typedef typename product::type productType; \
\
auto tres = \
tmp>::New \
( \
IOobject \
( \
'(' + gf1.name() + #op + gf2.name() + ')', \
gf1.instance(), \
gf1.db(), \
IOobject::NO_READ, \
IOobject::NO_WRITE \
), \
gf1.mesh(), \
gf1.dimensions() op gf2.dimensions() \
); \
\
Foam::opFunc(tres.ref(), gf1, gf2); \
\
return tres; \
} \
\
\
template \
class PatchField, class GeoMesh> \
tmp \
< \
GeometricField::type, PatchField, GeoMesh> \
> \
operator op \
( \
const GeometricField& gf1, \
const tmp>& tgf2 \
) \
{ \
typedef typename product::type productType; \
\
const GeometricField& gf2 = tgf2(); \
\
auto tres = \
reuseTmpGeometricField::New \
( \
tgf2, \
'(' + gf1.name() + #op + gf2.name() + ')', \
gf1.dimensions() op gf2.dimensions() \
); \
\
Foam::opFunc(tres.ref(), gf1, gf2); \
\
tgf2.clear(); \
\
return tres; \
} \
\
template \
class PatchField, class GeoMesh> \
tmp \
< \
GeometricField::type, PatchField, GeoMesh> \
> \
operator op \
( \
const tmp>& tgf1, \
const GeometricField& gf2 \
) \
{ \
typedef typename product::type productType; \
\
const GeometricField& gf1 = tgf1(); \
\
auto tres = \
reuseTmpGeometricField::New \
( \
tgf1, \
'(' + gf1.name() + #op + gf2.name() + ')', \
gf1.dimensions() op gf2.dimensions() \
); \
\
Foam::opFunc(tres.ref(), gf1, gf2); \
\
tgf1.clear(); \
\
return tres; \
} \
\
template \
class PatchField, class GeoMesh> \
tmp \
< \
GeometricField::type, PatchField, GeoMesh> \
> \
operator op \
( \
const tmp>& tgf1, \
const tmp>& tgf2 \
) \
{ \
typedef typename product::type productType; \
\
const GeometricField& gf1 = tgf1(); \
const GeometricField& gf2 = tgf2(); \
\
auto tres = \
reuseTmpTmpGeometricField \
::New \
( \
tgf1, \
tgf2, \
'(' + gf1.name() + #op + gf2.name() + ')', \
gf1.dimensions() op gf2.dimensions() \
); \
\
Foam::opFunc(tres.ref(), gf1, gf2); \
\
tgf1.clear(); \
tgf2.clear(); \
\
return tres; \
} \
\
template \
class PatchField, class GeoMesh> \
void opFunc \
( \
GeometricField \
::type, PatchField, GeoMesh>& gf, \
const GeometricField& gf1, \
const dimensioned