/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2020-2023 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
InNamespace
Foam
Description
3D tensor transformation operations.
\*---------------------------------------------------------------------------*/
#ifndef Foam_transform_H
#define Foam_transform_H
#include "tensor.H"
#include "mathematicalConstants.H"
#include
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
//- Rotational transformation tensor from vector n1 to n2
inline tensor rotationTensor
(
const vector& n1,
const vector& n2
)
{
const scalar s = n1 & n2;
const vector n3 = n1 ^ n2;
const scalar magSqrN3 = magSqr(n3);
// n1 and n2 define a plane n3
if (magSqrN3 > SMALL)
{
// Return rotational transformation tensor in the n3-plane
return
s*I
+ (1 - s)*sqr(n3)/magSqrN3
+ (n2*n1 - n1*n2);
}
// n1 and n2 are contradirectional
else if (s < 0)
{
// Return mirror transformation tensor
return I + 2*n1*n2;
}
// n1 and n2 are codirectional
else
{
// Return null transformation tensor
return I;
}
}
//- Rotational transformation tensor about the x-axis by omega radians
inline tensor Rx(const scalar omega)
{
const scalar s = sin(omega);
const scalar c = cos(omega);
return tensor
(
1, 0, 0,
0, c, s,
0, -s, c
);
}
//- Rotational transformation tensor about the y-axis by omega radians
inline tensor Ry(const scalar omega)
{
const scalar s = sin(omega);
const scalar c = cos(omega);
return tensor
(
c, 0, -s,
0, 1, 0,
s, 0, c
);
}
//- Rotational transformation tensor about the z-axis by omega radians
inline tensor Rz(const scalar omega)
{
const scalar s = sin(omega);
const scalar c = cos(omega);
return tensor
(
c, s, 0,
-s, c, 0,
0, 0, 1
);
}
//- Rotational transformation tensor about axis a by omega radians
inline tensor Ra(const vector& a, const scalar omega)
{
const scalar s = sin(omega);
const scalar c = cos(omega);
return tensor
(
sqr(a.x())*(1 - c) + c,
a.y()*a.x()*(1 - c) + a.z()*s,
a.x()*a.z()*(1 - c) - a.y()*s,
a.x()*a.y()*(1 - c) - a.z()*s,
sqr(a.y())*(1 - c) + c,
a.y()*a.z()*(1 - c) + a.x()*s,
a.x()*a.z()*(1 - c) + a.y()*s,
a.y()*a.z()*(1 - c) - a.x()*s,
sqr(a.z())*(1 - c) + c
);
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
//- No-op rotational transform for base types
template
constexpr typename std::enable_if::value, T>::type
transform(const tensor&, const T val)
{
return val;
}
//- No-op rotational transform for spherical tensor
template
inline SphericalTensor transform
(
const tensor&,
const SphericalTensor& val
)
{
return val;
}
//- No-op inverse rotational transform for base types
template
constexpr typename std::enable_if::value, T>::type
invTransform(const tensor&, const T val)
{
return val;
}
//- No-op inverse rotational transform for spherical tensor
template
inline SphericalTensor invTransform
(
const tensor&,
const SphericalTensor& val
)
{
return val;
}
//- Use rotational tensor to transform a vector.
// Same as (rot & v)
template
inline Vector transform(const tensor& tt, const Vector& v)
{
return (tt & v);
}
//- Use rotational tensor to inverse transform a vector.
// Same as (v & rot)
template
inline Vector invTransform(const tensor& tt, const Vector& v)
{
return (v & tt);
}
//- Use rotational tensor to transform a tensor.
// Same as (rot & input & rot.T())
template
inline Tensor transform(const tensor& tt, const Tensor& t)
{
return Tensor
(
// xx:
(tt.xx()*t.xx() + tt.xy()*t.yx() + tt.xz()*t.zx())*tt.xx()
+ (tt.xx()*t.xy() + tt.xy()*t.yy() + tt.xz()*t.zy())*tt.xy()
+ (tt.xx()*t.xz() + tt.xy()*t.yz() + tt.xz()*t.zz())*tt.xz(),
// xy:
(tt.xx()*t.xx() + tt.xy()*t.yx() + tt.xz()*t.zx())*tt.yx()
+ (tt.xx()*t.xy() + tt.xy()*t.yy() + tt.xz()*t.zy())*tt.yy()
+ (tt.xx()*t.xz() + tt.xy()*t.yz() + tt.xz()*t.zz())*tt.yz(),
// xz:
(tt.xx()*t.xx() + tt.xy()*t.yx() + tt.xz()*t.zx())*tt.zx()
+ (tt.xx()*t.xy() + tt.xy()*t.yy() + tt.xz()*t.zy())*tt.zy()
+ (tt.xx()*t.xz() + tt.xy()*t.yz() + tt.xz()*t.zz())*tt.zz(),
// yx:
(tt.yx()*t.xx() + tt.yy()*t.yx() + tt.yz()*t.zx())*tt.xx()
+ (tt.yx()*t.xy() + tt.yy()*t.yy() + tt.yz()*t.zy())*tt.xy()
+ (tt.yx()*t.xz() + tt.yy()*t.yz() + tt.yz()*t.zz())*tt.xz(),
// yy:
(tt.yx()*t.xx() + tt.yy()*t.yx() + tt.yz()*t.zx())*tt.yx()
+ (tt.yx()*t.xy() + tt.yy()*t.yy() + tt.yz()*t.zy())*tt.yy()
+ (tt.yx()*t.xz() + tt.yy()*t.yz() + tt.yz()*t.zz())*tt.yz(),
// yz:
(tt.yx()*t.xx() + tt.yy()*t.yx() + tt.yz()*t.zx())*tt.zx()
+ (tt.yx()*t.xy() + tt.yy()*t.yy() + tt.yz()*t.zy())*tt.zy()
+ (tt.yx()*t.xz() + tt.yy()*t.yz() + tt.yz()*t.zz())*tt.zz(),
// zx:
(tt.zx()*t.xx() + tt.zy()*t.yx() + tt.zz()*t.zx())*tt.xx()
+ (tt.zx()*t.xy() + tt.zy()*t.yy() + tt.zz()*t.zy())*tt.xy()
+ (tt.zx()*t.xz() + tt.zy()*t.yz() + tt.zz()*t.zz())*tt.xz(),
// zy:
(tt.zx()*t.xx() + tt.zy()*t.yx() + tt.zz()*t.zx())*tt.yx()
+ (tt.zx()*t.xy() + tt.zy()*t.yy() + tt.zz()*t.zy())*tt.yy()
+ (tt.zx()*t.xz() + tt.zy()*t.yz() + tt.zz()*t.zz())*tt.yz(),
// zz:
(tt.zx()*t.xx() + tt.zy()*t.yx() + tt.zz()*t.zx())*tt.zx()
+ (tt.zx()*t.xy() + tt.zy()*t.yy() + tt.zz()*t.zy())*tt.zy()
+ (tt.zx()*t.xz() + tt.zy()*t.yz() + tt.zz()*t.zz())*tt.zz()
);
}
//- Use rotational tensor to inverse transform a tensor.
// Same as (rot.T() & input & rot)
template
inline Tensor invTransform(const tensor& tt, const Tensor& t)
{
return Tensor
(
// xx:
(tt.xx()*t.xx() + tt.yx()*t.yx() + tt.zx()*t.zx())*tt.xx()
+ (tt.xx()*t.xy() + tt.yx()*t.yy() + tt.zx()*t.zy())*tt.yx()
+ (tt.xx()*t.xz() + tt.yx()*t.yz() + tt.zx()*t.zz())*tt.zx(),
// xy:
(tt.xx()*t.xx() + tt.yx()*t.yx() + tt.zx()*t.zx())*tt.xy()
+ (tt.xx()*t.xy() + tt.yx()*t.yy() + tt.zx()*t.zy())*tt.yy()
+ (tt.xx()*t.xz() + tt.yx()*t.yz() + tt.zx()*t.zz())*tt.zy(),
// xz:
(tt.xx()*t.xx() + tt.yx()*t.yx() + tt.zx()*t.zx())*tt.xz()
+ (tt.xx()*t.xy() + tt.yx()*t.yy() + tt.zx()*t.zy())*tt.yz()
+ (tt.xx()*t.xz() + tt.yx()*t.yz() + tt.zx()*t.zz())*tt.zz(),
// yx:
(tt.xy()*t.xx() + tt.yy()*t.yx() + tt.zy()*t.zx())*tt.xx()
+ (tt.xy()*t.xy() + tt.yy()*t.yy() + tt.zy()*t.zy())*tt.yx()
+ (tt.xy()*t.xz() + tt.yy()*t.yz() + tt.zy()*t.zz())*tt.zx(),
// yy:
(tt.xy()*t.xx() + tt.yy()*t.yx() + tt.zy()*t.zx())*tt.xy()
+ (tt.xy()*t.xy() + tt.yy()*t.yy() + tt.zy()*t.zy())*tt.yy()
+ (tt.xy()*t.xz() + tt.yy()*t.yz() + tt.zy()*t.zz())*tt.zy(),
// yz:
(tt.xy()*t.xx() + tt.yy()*t.yx() + tt.zy()*t.zx())*tt.xz()
+ (tt.xy()*t.xy() + tt.yy()*t.yy() + tt.zy()*t.zy())*tt.yz()
+ (tt.xy()*t.xz() + tt.yy()*t.yz() + tt.zy()*t.zz())*tt.zz(),
// zx:
(tt.xz()*t.xx() + tt.yz()*t.yx() + tt.zz()*t.zx())*tt.xx()
+ (tt.xz()*t.xy() + tt.yz()*t.yy() + tt.zz()*t.zy())*tt.yx()
+ (tt.xz()*t.xz() + tt.yz()*t.yz() + tt.zz()*t.zz())*tt.zx(),
// zy:
(tt.xz()*t.xx() + tt.yz()*t.yx() + tt.zz()*t.zx())*tt.xy()
+ (tt.xz()*t.xy() + tt.yz()*t.yy() + tt.zz()*t.zy())*tt.yy()
+ (tt.xz()*t.xz() + tt.yz()*t.yz() + tt.zz()*t.zz())*tt.zy(),
// zz:
(tt.xz()*t.xx() + tt.yz()*t.yx() + tt.zz()*t.zx())*tt.xz()
+ (tt.xz()*t.xy() + tt.yz()*t.yy() + tt.zz()*t.zy())*tt.yz()
+ (tt.xz()*t.xz() + tt.yz()*t.yz() + tt.zz()*t.zz())*tt.zz()
);
}
//- Use rotational tensor to transform a symmetrical tensor.
// Same as (rot & input & rot.T())
template
inline SymmTensor transform(const tensor& tt, const SymmTensor& st)
{
return SymmTensor
(
// xx:
(tt.xx()*st.xx() + tt.xy()*st.xy() + tt.xz()*st.xz())*tt.xx()
+ (tt.xx()*st.xy() + tt.xy()*st.yy() + tt.xz()*st.yz())*tt.xy()
+ (tt.xx()*st.xz() + tt.xy()*st.yz() + tt.xz()*st.zz())*tt.xz(),
// xy:
(tt.xx()*st.xx() + tt.xy()*st.xy() + tt.xz()*st.xz())*tt.yx()
+ (tt.xx()*st.xy() + tt.xy()*st.yy() + tt.xz()*st.yz())*tt.yy()
+ (tt.xx()*st.xz() + tt.xy()*st.yz() + tt.xz()*st.zz())*tt.yz(),
// xz:
(tt.xx()*st.xx() + tt.xy()*st.xy() + tt.xz()*st.xz())*tt.zx()
+ (tt.xx()*st.xy() + tt.xy()*st.yy() + tt.xz()*st.yz())*tt.zy()
+ (tt.xx()*st.xz() + tt.xy()*st.yz() + tt.xz()*st.zz())*tt.zz(),
// yy:
(tt.yx()*st.xx() + tt.yy()*st.xy() + tt.yz()*st.xz())*tt.yx()
+ (tt.yx()*st.xy() + tt.yy()*st.yy() + tt.yz()*st.yz())*tt.yy()
+ (tt.yx()*st.xz() + tt.yy()*st.yz() + tt.yz()*st.zz())*tt.yz(),
// yz:
(tt.yx()*st.xx() + tt.yy()*st.xy() + tt.yz()*st.xz())*tt.zx()
+ (tt.yx()*st.xy() + tt.yy()*st.yy() + tt.yz()*st.yz())*tt.zy()
+ (tt.yx()*st.xz() + tt.yy()*st.yz() + tt.yz()*st.zz())*tt.zz(),
// zz:
(tt.zx()*st.xx() + tt.zy()*st.xy() + tt.zz()*st.xz())*tt.zx()
+ (tt.zx()*st.xy() + tt.zy()*st.yy() + tt.zz()*st.yz())*tt.zy()
+ (tt.zx()*st.xz() + tt.zy()*st.yz() + tt.zz()*st.zz())*tt.zz()
);
}
//- Use rotational tensor to inverse transform a symmetrical tensor.
// Same as (rot.T() & input & rot)
template
inline SymmTensor
invTransform(const tensor& tt, const SymmTensor& st)
{
return SymmTensor
(
// xx:
(tt.xx()*st.xx() + tt.yx()*st.xy() + tt.zx()*st.xz())*tt.xx()
+ (tt.xx()*st.xy() + tt.yx()*st.yy() + tt.zx()*st.yz())*tt.yx()
+ (tt.xx()*st.xz() + tt.yx()*st.yz() + tt.zx()*st.zz())*tt.zx(),
// xy:
(tt.xx()*st.xx() + tt.yx()*st.xy() + tt.zx()*st.xz())*tt.xy()
+ (tt.xx()*st.xy() + tt.yx()*st.yy() + tt.zx()*st.yz())*tt.yy()
+ (tt.xx()*st.xz() + tt.yx()*st.yz() + tt.zx()*st.zz())*tt.zy(),
// xz:
(tt.xx()*st.xx() + tt.yx()*st.xy() + tt.zx()*st.xz())*tt.xz()
+ (tt.xx()*st.xy() + tt.yx()*st.yy() + tt.zx()*st.yz())*tt.yz()
+ (tt.xx()*st.xz() + tt.yx()*st.yz() + tt.zx()*st.zz())*tt.zz(),
// yy:
(tt.xy()*st.xx() + tt.yy()*st.xy() + tt.zy()*st.xz())*tt.xy()
+ (tt.xy()*st.xy() + tt.yy()*st.yy() + tt.zy()*st.yz())*tt.yy()
+ (tt.xy()*st.xz() + tt.yy()*st.yz() + tt.zy()*st.zz())*tt.zy(),
// yz:
(tt.xy()*st.xx() + tt.yy()*st.xy() + tt.zy()*st.xz())*tt.xz()
+ (tt.xy()*st.xy() + tt.yy()*st.yy() + tt.zy()*st.yz())*tt.yz()
+ (tt.xy()*st.xz() + tt.yy()*st.yz() + tt.zy()*st.zz())*tt.zz(),
// zz:
(tt.xz()*st.xx() + tt.yz()*st.xy() + tt.zz()*st.xz())*tt.xz()
+ (tt.xz()*st.xy() + tt.yz()*st.yy() + tt.zz()*st.yz())*tt.yz()
+ (tt.xz()*st.xz() + tt.yz()*st.yz() + tt.zz()*st.zz())*tt.zz()
);
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
template
inline Type1 transformMask(const Type2& t)
{
return t;
}
template<>
inline sphericalTensor transformMask(const tensor& t)
{
return sph(t);
}
template<>
inline symmTensor transformMask(const tensor& t)
{
return symm(t);
}
//- Estimate angle of vec in coordinate system (e0, e1, e0^e1).
// Is guaranteed to return increasing number but is not correct
// angle. Used for sorting angles. All input vectors need to be normalized.
//
// Calculates scalar which increases with angle going from e0 to vec in
// the coordinate system e0, e1, e0^e1
//
// Jumps from 2*pi -> 0 at -SMALL so hopefully parallel vectors with small
// rounding errors should still get the same quadrant.
//
inline scalar pseudoAngle
(
const vector& e0,
const vector& e1,
const vector& vec
)
{
const scalar cos_angle = vec & e0;
const scalar sin_angle = vec & e1;
if (sin_angle < -SMALL)
{
return (3.0 + cos_angle)*constant::mathematical::piByTwo;
}
else
{
return (1.0 - cos_angle)*constant::mathematical::piByTwo;
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //