/*---------------------------------------------------------------------------*\ ========= | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \\ / O peration | \\ / A nd | Copyright (C) 1991-2008 OpenCFD Ltd. \\/ M anipulation | ------------------------------------------------------------------------------- License This file is part of OpenFOAM. OpenFOAM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. OpenFOAM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenFOAM; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA \*---------------------------------------------------------------------------*/ #include "treeBoundBox.H" #include "Random.H" // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // namespace Foam { // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * // // Construct null setting points to zero inline treeBoundBox::treeBoundBox() : boundBox() {} // Construct from components inline treeBoundBox::treeBoundBox(const point& min, const point& max) : boundBox(min, max) {} // Construct from components inline treeBoundBox::treeBoundBox(const boundBox& bb) : boundBox(bb) {} // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * // inline scalar treeBoundBox::minDim() const { return ::Foam::min ( max().x() - min().x(), ::Foam::min ( max().y() - min().y(), max().z() - min().z() ) ); } inline scalar treeBoundBox::maxDim() const { return ::Foam::max ( max().x() - min().x(), ::Foam::max ( max().y() - min().y(), max().z() - min().z() ) ); } inline scalar treeBoundBox::avgDim() const { return ( (max().x() - min().x()) + (max().y() - min().y()) + (max().z() - min().z()) )/3.0; } inline scalar treeBoundBox::typDim() const { return avgDim(); } inline point treeBoundBox::mid() const { return 0.5*(min() + max()); } inline point treeBoundBox::corner(const direction octant) const { return point ( (octant&RIGHTHALF) ? max().x() : min().x(), (octant&TOPHALF) ? max().y() : min().y(), (octant&FRONTHALF) ? max().z() : min().z() ); } // Returns octant in which sample resides. Reverse of subBbox. inline direction treeBoundBox::subOctant(const point& sample) const { point mid = 0.5*(max() + min()); direction octant = 0; if (sample.x() > mid.x()) { octant |= treeBoundBox::RIGHTHALF; } if (sample.y() > mid.y()) { octant |= treeBoundBox::TOPHALF; } if (sample.z() > mid.z()) { octant |= treeBoundBox::FRONTHALF; } return octant; } // Returns octant in which sample resides. Reverse of subBbox. Precalculated // midpoint inline direction treeBoundBox::subOctant ( const point& mid, const point& sample ) { direction octant = 0; if (sample.x() > mid.x()) { octant |= treeBoundBox::RIGHTHALF; } if (sample.y() > mid.y()) { octant |= treeBoundBox::TOPHALF; } if (sample.z() > mid.z()) { octant |= treeBoundBox::FRONTHALF; } return octant; } // Returns octant in which sample resides. Reverse of subBbox. Flags sample // exactly on edge. inline direction treeBoundBox::subOctant(const point& sample, bool& onEdge) const { point mid = 0.5*(max() + min()); direction octant = 0; onEdge = false; if (sample.x() > mid.x()) { octant |= treeBoundBox::RIGHTHALF; } else if (sample.x() == mid.x()) { onEdge = true; } if (sample.y() > mid.y()) { octant |= treeBoundBox::TOPHALF; } else if (sample.y() == mid.y()) { onEdge = true; } if (sample.z() > mid.z()) { octant |= treeBoundBox::FRONTHALF; } else if (sample.z() == mid.z()) { onEdge = true; } return octant; } // Returns octant in which sample resides. Reverse of subBbox. Precalculated // midpoint inline direction treeBoundBox::subOctant ( const point& mid, const point& sample, bool& onEdge ) { direction octant = 0; onEdge = false; if (sample.x() > mid.x()) { octant |= treeBoundBox::RIGHTHALF; } else if (sample.x() == mid.x()) { onEdge = true; } if (sample.y() > mid.y()) { octant |= treeBoundBox::TOPHALF; } else if (sample.y() == mid.y()) { onEdge = true; } if (sample.z() > mid.z()) { octant |= treeBoundBox::FRONTHALF; } else if (sample.z() == mid.z()) { onEdge = true; } return octant; } // Returns octant in which intersection resides. // Precalculated midpoint. If the sample is on the dividing line between // the octants the direction vector determines which octant to use // (i.e. in which octant the sample would be if it were moved along dir) inline direction treeBoundBox::subOctant ( const point& mid, const vector& dir, const point& sample, bool& onEdge ) { direction octant = 0; onEdge = false; if (sample.x() > mid.x()) { octant |= treeBoundBox::RIGHTHALF; } else if (sample.x() == mid.x()) { onEdge = true; if (dir.x() > 0) { octant |= treeBoundBox::RIGHTHALF; } } if (sample.y() > mid.y()) { octant |= treeBoundBox::TOPHALF; } else if (sample.y() == mid.y()) { onEdge = true; if (dir.y() > 0) { octant |= treeBoundBox::TOPHALF; } } if (sample.z() > mid.z()) { octant |= treeBoundBox::FRONTHALF; } else if (sample.z() == mid.z()) { onEdge = true; if (dir.z() > 0) { octant |= treeBoundBox::FRONTHALF; } } return octant; } // Returns reference to octantOrder which defines the // order to do the search. inline void treeBoundBox::searchOrder ( const point& sample, FixedList& octantOrder ) const { vector dist = mid() - sample; direction octant = 0; if (dist.x() < 0) { octant |= treeBoundBox::RIGHTHALF; dist.x() *= -1; } if (dist.y() < 0) { octant |= treeBoundBox::TOPHALF; dist.y() *= -1; } if (dist.z() < 0) { octant |= treeBoundBox::FRONTHALF; dist.z() *= -1; } direction min = 0; direction mid = 0; direction max = 0; if( dist.x() < dist.y()) { if( dist.y() < dist.z()) { min = treeBoundBox::RIGHTHALF; mid = treeBoundBox::TOPHALF; max = treeBoundBox::FRONTHALF; } else if( dist.z() < dist.x()) { min = treeBoundBox::FRONTHALF; mid = treeBoundBox::RIGHTHALF; max = treeBoundBox::TOPHALF; } else { min = treeBoundBox::RIGHTHALF; mid = treeBoundBox::FRONTHALF; max = treeBoundBox::TOPHALF; } } else { if( dist.z() < dist.y()) { min = treeBoundBox::FRONTHALF; mid = treeBoundBox::TOPHALF; max = treeBoundBox::RIGHTHALF; } else if( dist.x() < dist.z()) { min = treeBoundBox::TOPHALF; mid = treeBoundBox::RIGHTHALF; max = treeBoundBox::FRONTHALF; } else { min = treeBoundBox::TOPHALF; mid = treeBoundBox::FRONTHALF; max = treeBoundBox::RIGHTHALF; } } // Primary subOctant octantOrder[0] = octant; // subOctants joined to the primary by faces. octantOrder[1] = octant ^ min; octantOrder[2] = octant ^ mid; octantOrder[3] = octant ^ max; // subOctants joined to the primary by edges. octantOrder[4] = octantOrder[1] ^ mid; octantOrder[5] = octantOrder[1] ^ max; octantOrder[6] = octantOrder[2] ^ max; // subOctants joined to the primary by corner. octantOrder[7] = octantOrder[4] ^ max; } // true if bb's intersect or overlap. // Note: <= to make sure we catch all. inline bool treeBoundBox::overlaps(const treeBoundBox& bb) const { return boundBox::overlaps(bb); } inline bool treeBoundBox::contains(const point& sample) const { return ( (sample.x() >= min().x()) && (sample.y() >= min().y()) && (sample.z() >= min().z()) && (sample.x() <= max().x()) && (sample.y() <= max().y()) && (sample.z() <= max().z()) ); } //- Return slightly wider bounding box inline treeBoundBox treeBoundBox::extend(Random& rndGen, const scalar s) const { treeBoundBox bb(*this); const vector span(bb.max() - bb.min()); bb.min() -= cmptMultiply(s*rndGen.vector01(), span); bb.max() += cmptMultiply(s*rndGen.vector01(), span); return bb; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // } // End namespace Foam // ************************************************************************* //