/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation | Copyright (C) 2015 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
\*---------------------------------------------------------------------------*/
#include "edgeIntersections.H"
#include "triSurfaceSearch.H"
#include "OFstream.H"
#include "triSurface.H"
#include "pointIndexHit.H"
#include "treeDataTriSurface.H"
#include "indexedOctree.H"
#include "meshTools.H"
#include "plane.H"
#include "Random.H"
#include "unitConversion.H"
#include "treeBoundBox.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(edgeIntersections, 0);
}
Foam::scalar Foam::edgeIntersections::alignedCos_ = Foam::cos(degToRad(89.0));
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::edgeIntersections::checkEdges(const triSurface& surf)
{
const pointField& localPoints = surf.localPoints();
const edgeList& edges = surf.edges();
treeBoundBox bb(localPoints);
scalar minSize = SMALL * bb.minDim();
forAll(edges, edgeI)
{
const edge& e = edges[edgeI];
scalar eMag = e.mag(localPoints);
if (eMag < minSize)
{
WarningInFunction
<< "Edge " << edgeI << " vertices " << e
<< " coords:" << localPoints[e[0]] << ' '
<< localPoints[e[1]] << " is very small compared to bounding"
<< " box dimensions " << bb << endl
<< "This might lead to problems in intersection"
<< endl;
}
}
}
// Update intersections for selected edges.
void Foam::edgeIntersections::intersectEdges
(
const triSurface& surf1,
const pointField& points1, // surf1 meshPoints (not localPoints!)
const triSurfaceSearch& querySurf2,
const scalarField& surf1PointTol, // surf1 tolerance per point
const labelList& edgeLabels
)
{
const triSurface& surf2 = querySurf2.surface();
const vectorField& normals2 = surf2.faceNormals();
const labelList& meshPoints = surf1.meshPoints();
if (debug)
{
Pout<< "Calculating intersection of " << edgeLabels.size() << " edges"
<< " out of " << surf1.nEdges() << " with " << surf2.size()
<< " triangles ..." << endl;
}
pointField start(edgeLabels.size());
pointField end(edgeLabels.size());
vectorField edgeDirs(edgeLabels.size());
// Go through all edges, calculate intersections
forAll(edgeLabels, i)
{
label edgeI = edgeLabels[i];
if (debug)// && (i % 1000 == 0))
{
Pout<< "Intersecting edge " << edgeI << " with surface" << endl;
}
const edge& e = surf1.edges()[edgeI];
const point& pStart = points1[meshPoints[e.start()]];
const point& pEnd = points1[meshPoints[e.end()]];
const vector eVec(pEnd - pStart);
const vector n(eVec/(mag(eVec) + VSMALL));
// Start tracking somewhat before pStart and up to somewhat after p1.
// Note that tolerances here are smaller than those used to classify
// hit below.
// This will cause this hit to be marked as degenerate and resolved
// later on.
start[i] = pStart - 0.5*surf1PointTol[e[0]]*n;
end[i] = pEnd + 0.5*surf1PointTol[e[1]]*n;
edgeDirs[i] = n;
}
List> edgeIntersections;
querySurf2.findLineAll
(
start,
end,
edgeIntersections
);
label nHits = 0;
// Classify the hits
forAll(edgeLabels, i)
{
const label edgeI = edgeLabels[i];
labelList& intersectionTypes = classification_[edgeI];
intersectionTypes.setSize(edgeIntersections[i].size(), -1);
this->operator[](edgeI).transfer(edgeIntersections[i]);
forAll(intersectionTypes, hitI)
{
const pointIndexHit& pHit = this->operator[](edgeI)[hitI];
label& hitType = intersectionTypes[hitI];
if (!pHit.hit())
{
continue;
}
const edge& e = surf1.edges()[edgeI];
// Classify point on surface1 edge.
if (mag(pHit.hitPoint() - start[i]) < surf1PointTol[e[0]])
{
// Intersection is close to edge start
hitType = 0;
}
else if (mag(pHit.hitPoint() - end[i]) < surf1PointTol[e[1]])
{
// Intersection is close to edge end
hitType = 1;
}
else if (mag(edgeDirs[i] & normals2[pHit.index()]) < alignedCos_)
{
// Edge is almost coplanar with the face
Pout<< "Flat angle edge:" << edgeI
<< " face:" << pHit.index()
<< " cos:" << mag(edgeDirs[i] & normals2[pHit.index()])
<< endl;
hitType = 2;
}
if (debug)
{
Info<< " hit " << pHit << " classify = " << hitType << endl;
}
nHits++;
}
}
if (debug)
{
Pout<< "Found " << nHits << " intersections of edges with surface ..."
<< endl;
}
}
// If edgeI intersections are close to endpoint of edge shift endpoints
// slightly along edge
// Updates
// - points1 with new endpoint position
// - affectedEdges with all edges affected by moving the point
// Returns true if changed anything.
bool Foam::edgeIntersections::inlinePerturb
(
const triSurface& surf1,
const scalarField& surf1PointTol, // surf1 tolerance per point
const label edgeI,
Random& rndGen,
pointField& points1,
boolList& affectedEdges
) const
{
bool hasPerturbed = false;
// Check if edge close to endpoint. Note that we only have to check
// the intersection closest to the edge endpoints (i.e. first and last in
// edgeEdgs)
const labelList& edgeEnds = classification_[edgeI];
if (edgeEnds.size())
{
bool perturbStart = false;
bool perturbEnd = false;
// Check first intersection.
if (edgeEnds.first() == 0)
{
perturbStart = true;
}
if (edgeEnds.last() == 1)
{
perturbEnd = true;
}
if (perturbStart || perturbEnd)
{
const edge& e = surf1.edges()[edgeI];
label v0 = surf1.meshPoints()[e[0]];
label v1 = surf1.meshPoints()[e[1]];
vector eVec(points1[v1] - points1[v0]);
vector n = eVec/mag(eVec);
if (perturbStart)
{
// Perturb with something (hopefully) larger than tolerance.
scalar t = 4.0*(rndGen.sample01() - 0.5);
points1[v0] += t*surf1PointTol[e[0]]*n;
const labelList& pEdges = surf1.pointEdges()[e[0]];
forAll(pEdges, i)
{
affectedEdges[pEdges[i]] = true;
}
}
if (perturbEnd)
{
// Perturb with something larger than tolerance.
scalar t = 4.0*(rndGen.sample01() - 0.5);
points1[v1] += t*surf1PointTol[e[1]]*n;
const labelList& pEdges = surf1.pointEdges()[e[1]];
forAll(pEdges, i)
{
affectedEdges[pEdges[i]] = true;
}
}
hasPerturbed = true;
}
}
return hasPerturbed;
}
// Perturb single edge endpoint when perpendicular to face
bool Foam::edgeIntersections::rotatePerturb
(
const triSurface& surf1,
const scalarField& surf1PointTol, // surf1 tolerance per point
const label edgeI,
Random& rndGen,
pointField& points1,
boolList& affectedEdges
) const
{
const labelList& meshPoints = surf1.meshPoints();
const labelList& edgeEnds = classification_[edgeI];
bool hasPerturbed = false;
forAll(edgeEnds, i)
{
if (edgeEnds[i] == 2)
{
const edge& e = surf1.edges()[edgeI];
// Endpoint to modify. Choose either start or end.
label pointi = e[rndGen.bit()];
//label pointi = e[0];
// Generate random vector slightly larger than tolerance.
vector rndVec = rndGen.sample01() - vector(0.5, 0.5, 0.5);
// Make sure rndVec only perp to edge
vector n(points1[meshPoints[e[1]]] - points1[meshPoints[e[0]]]);
scalar magN = mag(n) + VSMALL;
n /= magN;
rndVec -= n*(n & rndVec);
// Normalize
rndVec /= mag(rndVec) + VSMALL;
// Scale to be moved by tolerance.
rndVec *= 0.01*magN;
Pout<< "rotating: shifting endpoint " << meshPoints[pointi]
<< " of edge:" << edgeI << " verts:"
<< points1[meshPoints[e[0]]] << ' '
<< points1[meshPoints[e[1]]]
<< " by " << rndVec
<< " tol:" << surf1PointTol[pointi] << endl;
points1[meshPoints[pointi]] += rndVec;
// Mark edges affected by change to point
const labelList& pEdges = surf1.pointEdges()[pointi];
forAll(pEdges, i)
{
affectedEdges[pEdges[i]] = true;
}
hasPerturbed = true;
// Enough done for current edge; no need to test other intersections
// of this edge.
break;
}
}
return hasPerturbed;
}
// Perturb edge when close to face
bool Foam::edgeIntersections::offsetPerturb
(
const triSurface& surf1,
const triSurface& surf2,
const label edgeI,
Random& rndGen,
pointField& points1,
boolList& affectedEdges
) const
{
const labelList& meshPoints = surf1.meshPoints();
const edge& e = surf1.edges()[edgeI];
const List& hits = operator[](edgeI);
bool hasPerturbed = false;
// For all hits on edge
forAll(hits, i)
{
const pointIndexHit& pHit = hits[i];
// Classify point on face of surface2
label surf2Facei = pHit.index();
const triSurface::FaceType& f2 = surf2.localFaces()[surf2Facei];
const pointField& surf2Pts = surf2.localPoints();
const point ctr = f2.centre(surf2Pts);
label nearType, nearLabel;
f2.nearestPointClassify(pHit.hitPoint(), surf2Pts, nearType, nearLabel);
if (nearType == triPointRef::POINT || nearType == triPointRef::EDGE)
{
// Shift edge towards tri centre
vector offset =
0.01*rndGen.sample01()*(ctr - pHit.hitPoint());
// shift e[0]
points1[meshPoints[e[0]]] += offset;
// Mark edges affected by change to e0
const labelList& pEdges0 = surf1.pointEdges()[e[0]];
forAll(pEdges0, i)
{
affectedEdges[pEdges0[i]] = true;
}
// shift e[1]
points1[meshPoints[e[1]]] += offset;
// Mark edges affected by change to e1
const labelList& pEdges1 = surf1.pointEdges()[e[1]];
forAll(pEdges1, i)
{
affectedEdges[pEdges1[i]] = true;
}
hasPerturbed = true;
// No need to test any other hits on this edge
break;
}
}
return hasPerturbed;
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
// Construct null
Foam::edgeIntersections::edgeIntersections()
:
List>(),
classification_()
{}
Foam::edgeIntersections::edgeIntersections
(
const triSurface& surf1,
const triSurfaceSearch& query2,
const scalarField& surf1PointTol
)
:
List>(surf1.nEdges()),
classification_(surf1.nEdges())
{
checkEdges(surf1);
// Current set of edges to test
labelList edgesToTest(identity(surf1.nEdges()));
// Determine intersections for edgesToTest
intersectEdges
(
surf1,
surf1.points(), // surf1 meshPoints (not localPoints!)
query2,
surf1PointTol,
edgesToTest
);
}
// Construct from components
Foam::edgeIntersections::edgeIntersections
(
const List>& intersections,
const labelListList& classification
)
:
List>(intersections),
classification_(classification)
{}
// * * * * * * * * * * * * * * * Static Functions * * * * * * * * * * * * * //
Foam::scalarField Foam::edgeIntersections::minEdgeLength(const triSurface& surf)
{
const pointField& localPoints = surf.localPoints();
const labelListList& pointEdges = surf.pointEdges();
const edgeList& edges = surf.edges();
scalarField minLen(localPoints.size());
forAll(minLen, pointi)
{
const labelList& pEdges = pointEdges[pointi];
scalar minDist = GREAT;
forAll(pEdges, i)
{
minDist = min(minDist, edges[pEdges[i]].mag(localPoints));
}
minLen[pointi] = minDist;
}
return minLen;
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::label Foam::edgeIntersections::removeDegenerates
(
const label nIters,
const triSurface& surf1,
const triSurfaceSearch& query2,
const scalarField& surf1PointTol,
pointField& points1
)
{
const triSurface& surf2 = query2.surface();
Random rndGen(356574);
// Current set of edges to (re)test
labelList edgesToTest(surf1.nEdges());
// Start off with all edges
forAll(edgesToTest, i)
{
edgesToTest[i] = i;
}
label iter = 0;
for (; iter < nIters; iter++)
{
// Go through all edges to (re)test and perturb points if they are
// degenerate hits. Mark off edges that need to be recalculated.
boolList affectedEdges(surf1.nEdges(), false);
label nShifted = 0;
label nRotated = 0;
label nOffset = 0;
forAll(edgesToTest, i)
{
label edgeI = edgesToTest[i];
// If edge not already marked for retesting
if (!affectedEdges[edgeI])
{
// 1. Check edges close to endpoint and perturb if necessary.
bool shiftedEdgeEndPoints =
inlinePerturb
(
surf1,
surf1PointTol,
edgeI,
rndGen,
points1,
affectedEdges
);
nShifted += (shiftedEdgeEndPoints ? 1 : 0);
if (!shiftedEdgeEndPoints)
{
bool rotatedEdge =
rotatePerturb
(
surf1,
surf1PointTol,
edgeI,
rndGen,
points1,
affectedEdges
);
nRotated += (rotatedEdge ? 1 : 0);
if (!rotatedEdge)
{
// 2. we're sure now that the edge actually pierces the
// face. Now check the face for intersections close its
// points/edges
bool offsetEdgePoints =
offsetPerturb
(
surf1,
surf2,
edgeI,
rndGen,
points1,
affectedEdges
);
nOffset += (offsetEdgePoints ? 1 : 0);
}
}
}
}
if (debug)
{
Pout<< "Edges to test : " << nl
<< " total:" << edgesToTest.size() << nl
<< " resolved by:" << nl
<< " shifting : " << nShifted << nl
<< " rotating : " << nRotated << nl
<< " offsetting : " << nOffset << nl
<< endl;
}
if (nShifted == 0 && nRotated == 0 && nOffset == 0)
{
// Nothing changed in current iteration. Current hit pattern is
// without any degenerates.
break;
}
// Repack affected edges
labelList newEdgesToTest(surf1.nEdges());
label newEdgeI = 0;
forAll(affectedEdges, edgeI)
{
if (affectedEdges[edgeI])
{
newEdgesToTest[newEdgeI++] = edgeI;
}
}
newEdgesToTest.setSize(newEdgeI);
if (debug)
{
Pout<< "Edges to test:" << nl
<< " was : " << edgesToTest.size() << nl
<< " is : " << newEdgesToTest.size() << nl
<< endl;
}
// Transfer and test.
edgesToTest.transfer(newEdgesToTest);
if (edgesToTest.empty())
{
FatalErrorInFunction << "oops" << abort(FatalError);
}
// Re intersect moved edges.
intersectEdges
(
surf1,
points1, // surf1 meshPoints (not localPoints!)
query2,
surf1PointTol,
edgesToTest
);
}
return iter;
}
void Foam::edgeIntersections::merge
(
const edgeIntersections& subInfo,
const labelList& edgeMap,
const labelList& faceMap,
const bool merge
)
{
forAll(subInfo, subI)
{
const List& subHits = subInfo[subI];
const labelList& subClass = subInfo.classification()[subI];
label edgeI = edgeMap[subI];
List& intersections = operator[](edgeI);
labelList& intersectionTypes = classification_[edgeI];
// Count unique hits. Assume edge can hit face only once
label sz = 0;
if (merge)
{
sz = intersections.size();
}
label nNew = 0;
forAll(subHits, i)
{
const pointIndexHit& subHit = subHits[i];
bool foundFace = false;
for (label interI = 0; interI < sz; interI++)
{
if (intersections[interI].index() == faceMap[subHit.index()])
{
foundFace = true;
break;
}
}
if (!foundFace)
{
nNew++;
}
}
intersections.setSize(sz+nNew);
intersectionTypes.setSize(sz+nNew);
nNew = sz;
forAll(subHits, i)
{
const pointIndexHit& subHit = subHits[i];
bool foundFace = false;
for (label interI = 0; interI < sz; interI++)
{
if (intersections[interI].index() == faceMap[subHit.index()])
{
foundFace = true;
break;
}
}
if (!foundFace)
{
intersections[nNew] = pointIndexHit
(
subHit.hit(),
subHit.rawPoint(),
faceMap[subHit.index()]
);
intersectionTypes[nNew] = subClass[i];
nNew++;
}
}
}
}
// ************************************************************************* //