/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see .
\*---------------------------------------------------------------------------*/
#include "treeDataTriSurface.H"
#include "triSurfaceTools.H"
#include "triangleFuncs.H"
#include "indexedOctree.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
defineTypeNameAndDebug(Foam::treeDataTriSurface, 0);
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
// Fast distance to triangle calculation. From
// "Distance Between Point and Trangle in 3D"
// David Eberly, Magic Software Inc. Aug. 2003.
// Works on function Q giving distance to point and tries to minimize this.
Foam::scalar Foam::treeDataTriSurface::nearestCoords
(
const point& base,
const point& E0,
const point& E1,
const scalar a,
const scalar b,
const scalar c,
const point& P,
scalar& s,
scalar& t
)
{
// distance vector
const vector D(base - P);
// Precalculate distance factors.
const scalar d = E0 & D;
const scalar e = E1 & D;
// Do classification
const scalar det = a*c - b*b;
s = b*e - c*d;
t = b*d - a*e;
if (s+t < det)
{
if (s < 0)
{
if (t < 0)
{
//region 4
if (e > 0)
{
//min on edge t = 0
t = 0;
s = (d >= 0 ? 0 : (-d >= a ? 1 : -d/a));
}
else
{
//min on edge s=0
s = 0;
t = (e >= 0 ? 0 : (-e >= c ? 1 : -e/c));
}
}
else
{
//region 3. Min on edge s = 0
s = 0;
t = (e >= 0 ? 0 : (-e >= c ? 1 : -e/c));
}
}
else if (t < 0)
{
//region 5
t = 0;
s = (d >= 0 ? 0 : (-d >= a ? 1 : -d/a));
}
else
{
//region 0
const scalar invDet = 1/det;
s *= invDet;
t *= invDet;
}
}
else
{
if (s < 0)
{
//region 2
const scalar tmp0 = b + d;
const scalar tmp1 = c + e;
if (tmp1 > tmp0)
{
//min on edge s+t=1
const scalar numer = tmp1 - tmp0;
const scalar denom = a-2*b+c;
s = (numer >= denom ? 1 : numer/denom);
t = 1 - s;
}
else
{
//min on edge s=0
s = 0;
t = (tmp1 <= 0 ? 1 : (e >= 0 ? 0 : - e/c));
}
}
else if (t < 0)
{
//region 6
const scalar tmp0 = b + d;
const scalar tmp1 = c + e;
if (tmp1 > tmp0)
{
//min on edge s+t=1
const scalar numer = tmp1 - tmp0;
const scalar denom = a-2*b+c;
s = (numer >= denom ? 1 : numer/denom);
t = 1 - s;
}
else
{
//min on edge t=0
t = 0;
s = (tmp1 <= 0 ? 1 : (d >= 0 ? 0 : - d/a));
}
}
else
{
//region 1
const scalar numer = c+e-(b+d);
if (numer <= 0)
{
s = 0;
}
else
{
const scalar denom = a-2*b+c;
s = (numer >= denom ? 1 : numer/denom);
}
}
t = 1 - s;
}
// Calculate distance.
// Note: abs should not be needed but truncation error causes problems
// with points very close to one of the triangle vertices.
// (seen up to -9e-15). Alternatively add some small value.
const scalar f = D & D;
return Foam::mag(a*s*s + 2*b*s*t + c*t*t + 2*d*s + 2*e*t + f);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
// Construct from components
Foam::treeDataTriSurface::treeDataTriSurface(const triSurface& surface)
:
surface_(surface)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::pointField Foam::treeDataTriSurface::points() const
{
const pointField& points = surface_.points();
pointField centres(surface_.size());
forAll(surface_, triI)
{
centres[triI] = surface_[triI].centre(points);
}
return centres;
}
//- Get type of sample (inside/outside/mixed) w.r.t. surface.
Foam::label Foam::treeDataTriSurface::getVolumeType
(
const indexedOctree& tree,
const point& sample
) const
{
// Find nearest point
const treeBoundBox& treeBb = tree.bb();
pointIndexHit pHit = tree.findNearest
(
sample,
max
(
Foam::sqr(GREAT),
Foam::magSqr(treeBb.span())
)
);
if (!pHit.hit())
{
FatalErrorIn("treeDataTriSurface::getVolumeType(..)")
<< "treeBb:" << treeBb
<< " sample:" << sample
<< " pHit:" << pHit
<< abort(FatalError);
}
triSurfaceTools::sideType t = triSurfaceTools::surfaceSide
(
surface_,
sample,
pHit.index(),
pHit.hitPoint(),
indexedOctree::perturbTol()
);
if (t == triSurfaceTools::UNKNOWN)
{
return indexedOctree::UNKNOWN;
}
else if (t == triSurfaceTools::INSIDE)
{
return indexedOctree::INSIDE;
}
else if (t == triSurfaceTools::OUTSIDE)
{
return indexedOctree::OUTSIDE;
}
else
{
FatalErrorIn("treeDataTriSurface::getVolumeType(..)")
<< "problem" << abort(FatalError);
return indexedOctree::UNKNOWN;
}
}
// Check if any point on triangle is inside cubeBb.
bool Foam::treeDataTriSurface::overlaps
(
const label index,
const treeBoundBox& cubeBb
) const
{
const pointField& points = surface_.points();
const labelledTri& f = surface_[index];
// Triangle points
const point& p0 = points[f[0]];
const point& p1 = points[f[1]];
const point& p2 = points[f[2]];
treeBoundBox triBb(p0, p0);
triBb.min() = min(triBb.min(), p1);
triBb.min() = min(triBb.min(), p2);
triBb.max() = max(triBb.max(), p1);
triBb.max() = max(triBb.max(), p2);
//- For testing: robust one
//return cubeBb.overlaps(triBb);
//- Exact test of triangle intersecting bb
// Quick rejection. If whole bounding box of tri is outside cubeBb then
// there will be no intersection.
if (!cubeBb.overlaps(triBb))
{
return false;
}
// Check if one or more triangle point inside
if (cubeBb.contains(p0) || cubeBb.contains(p1) || cubeBb.contains(p2))
{
// One or more points inside
return true;
}
// Now we have the difficult case: all points are outside but connecting
// edges might go through cube. Use fast intersection of bounding box.
//return triangleFuncs::intersectBbExact(p0, p1, p2, cubeBb);
return triangleFuncs::intersectBb(p0, p1, p2, cubeBb);
}
// Calculate nearest point to sample. Updates (if any) nearestDistSqr, minIndex,
// nearestPoint.
void Foam::treeDataTriSurface::findNearest
(
const labelList& indices,
const point& sample,
scalar& nearestDistSqr,
label& minIndex,
point& nearestPoint
) const
{
const pointField& points = surface_.points();
forAll(indices, i)
{
label index = indices[i];
const labelledTri& f = surface_[index];
// Triangle points
const point& p0 = points[f[0]];
const point& p1 = points[f[1]];
const point& p2 = points[f[2]];
////- Possible optimization: do quick rejection of triangle if bounding
//// sphere does not intersect triangle bounding box. From simplistic
//// test was not found to speed up things.
//
//// Triangle bounding box.
//point triBbMin = min(p0, min(p1, p2));
//point triBbMax = max(p0, max(p1, p2));
//
//if
//(
// indexedOctree::intersects
// (
// triBbMin,
// triBbMax,
// nearestDistSqr,
// sample
// )
//)
{
// Get spanning vectors of triangle
vector base(p1);
vector E0(p0 - p1);
vector E1(p2 - p1);
scalar a(E0& E0);
scalar b(E0& E1);
scalar c(E1& E1);
// Get nearest point in s,t coordinates (s is along E0, t is along
// E1)
scalar s;
scalar t;
scalar distSqr = nearestCoords
(
base,
E0,
E1,
a,
b,
c,
sample,
s,
t
);
if (distSqr < nearestDistSqr)
{
nearestDistSqr = distSqr;
minIndex = index;
nearestPoint = base + s*E0 + t*E1;
}
}
}
}
// Calculate nearest point to line. Updates (if any) nearestDistSqr, minIndex,
// nearestPoint.
void Foam::treeDataTriSurface::findNearest
(
const labelList& indices,
const linePointRef& ln,
treeBoundBox& tightest,
label& minIndex,
point& linePoint,
point& nearestPoint
) const
{
notImplemented
(
"treeDataTriSurface::findNearest(const labelList&"
", const linePointRef&, treeBoundBox&, label&, point&, point&) const"
);
}
bool Foam::treeDataTriSurface::intersects
(
const label index,
const point& start,
const point& end,
point& intersectionPoint
) const
{
const pointField& points = surface_.points();
const labelledTri& f = surface_[index];
// Do quick rejection test
treeBoundBox triBb(points[f[0]], points[f[0]]);
triBb.min() = min(triBb.min(), points[f[1]]);
triBb.max() = max(triBb.max(), points[f[1]]);
triBb.min() = min(triBb.min(), points[f[2]]);
triBb.max() = max(triBb.max(), points[f[2]]);
const direction startBits(triBb.posBits(start));
const direction endBits(triBb.posBits(end));
if ((startBits & endBits) != 0)
{
// start and end in same block outside of triBb.
return false;
}
const triPointRef tri(points[f[0]], points[f[1]], points[f[2]]);
const vector dir(end - start);
// Use relative tolerance (from octree) to determine intersection.
pointHit inter = tri.intersection
(
start,
dir,
intersection::HALF_RAY,
indexedOctree::perturbTol()
);
if (inter.hit() && inter.distance() <= 1)
{
// Note: no extra test on whether intersection is in front of us
// since using half_ray.
intersectionPoint = inter.hitPoint();
return true;
}
else
{
return false;
}
//- Using exact intersections
//pointHit info = f.tri(points).intersectionExact(start, end);
//
//if (info.hit())
//{
// intersectionPoint = info.hitPoint();
//}
//return info.hit();
}
// ************************************************************************* //