Files
openfoam/src/meshTools/primitiveMeshGeometry/primitiveMeshGeometry.C
2009-03-12 19:25:21 +00:00

1529 lines
38 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
\*---------------------------------------------------------------------------*/
#include "primitiveMeshGeometry.H"
#include "pyramidPointFaceRef.H"
namespace Foam
{
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
defineTypeNameAndDebug(primitiveMeshGeometry, 0);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::primitiveMeshGeometry::updateFaceCentresAndAreas
(
const pointField& p,
const labelList& changedFaces
)
{
const faceList& fs = mesh_.faces();
forAll(changedFaces, i)
{
label facei = changedFaces[i];
const labelList& f = fs[facei];
label nPoints = f.size();
// If the face is a triangle, do a direct calculation for efficiency
// and to avoid round-off error-related problems
if (nPoints == 3)
{
faceCentres_[facei] = (1.0/3.0)*(p[f[0]] + p[f[1]] + p[f[2]]);
faceAreas_[facei] = 0.5*((p[f[1]] - p[f[0]])^(p[f[2]] - p[f[0]]));
}
else
{
vector sumN = vector::zero;
scalar sumA = 0.0;
vector sumAc = vector::zero;
point fCentre = p[f[0]];
for (label pi = 1; pi < nPoints; pi++)
{
fCentre += p[f[pi]];
}
fCentre /= nPoints;
for (label pi = 0; pi < nPoints; pi++)
{
const point& nextPoint = p[f[(pi + 1) % nPoints]];
vector c = p[f[pi]] + nextPoint + fCentre;
vector n = (nextPoint - p[f[pi]])^(fCentre - p[f[pi]]);
scalar a = mag(n);
sumN += n;
sumA += a;
sumAc += a*c;
}
faceCentres_[facei] = (1.0/3.0)*sumAc/(sumA + VSMALL);
faceAreas_[facei] = 0.5*sumN;
}
}
}
void Foam::primitiveMeshGeometry::updateCellCentresAndVols
(
const labelList& changedCells,
const labelList& changedFaces
)
{
// Clear the fields for accumulation
UIndirectList<vector>(cellCentres_, changedCells) = vector::zero;
UIndirectList<scalar>(cellVolumes_, changedCells) = 0.0;
const labelList& own = mesh_.faceOwner();
const labelList& nei = mesh_.faceNeighbour();
// first estimate the approximate cell centre as the average of face centres
vectorField cEst(mesh_.nCells());
UIndirectList<vector>(cEst, changedCells) = vector::zero;
scalarField nCellFaces(mesh_.nCells());
UIndirectList<scalar>(nCellFaces, changedCells) = 0.0;
forAll(changedFaces, i)
{
label faceI = changedFaces[i];
cEst[own[faceI]] += faceCentres_[faceI];
nCellFaces[own[faceI]] += 1;
if (mesh_.isInternalFace(faceI))
{
cEst[nei[faceI]] += faceCentres_[faceI];
nCellFaces[nei[faceI]] += 1;
}
}
forAll(changedCells, i)
{
label cellI = changedCells[i];
cEst[cellI] /= nCellFaces[cellI];
}
forAll(changedFaces, i)
{
label faceI = changedFaces[i];
// Calculate 3*face-pyramid volume
scalar pyr3Vol = max
(
faceAreas_[faceI] & (faceCentres_[faceI] - cEst[own[faceI]]),
VSMALL
);
// Calculate face-pyramid centre
vector pc = (3.0/4.0)*faceCentres_[faceI] + (1.0/4.0)*cEst[own[faceI]];
// Accumulate volume-weighted face-pyramid centre
cellCentres_[own[faceI]] += pyr3Vol*pc;
// Accumulate face-pyramid volume
cellVolumes_[own[faceI]] += pyr3Vol;
if (mesh_.isInternalFace(faceI))
{
// Calculate 3*face-pyramid volume
scalar pyr3Vol = max
(
faceAreas_[faceI] & (cEst[nei[faceI]] - faceCentres_[faceI]),
VSMALL
);
// Calculate face-pyramid centre
vector pc =
(3.0/4.0)*faceCentres_[faceI]
+ (1.0/4.0)*cEst[nei[faceI]];
// Accumulate volume-weighted face-pyramid centre
cellCentres_[nei[faceI]] += pyr3Vol*pc;
// Accumulate face-pyramid volume
cellVolumes_[nei[faceI]] += pyr3Vol;
}
}
forAll(changedCells, i)
{
label cellI = changedCells[i];
cellCentres_[cellI] /= cellVolumes_[cellI];
cellVolumes_[cellI] *= (1.0/3.0);
}
}
Foam::labelList Foam::primitiveMeshGeometry::affectedCells
(
const labelList& changedFaces
) const
{
const labelList& own = mesh_.faceOwner();
const labelList& nei = mesh_.faceNeighbour();
labelHashSet affectedCells(2*changedFaces.size());
forAll(changedFaces, i)
{
label faceI = changedFaces[i];
affectedCells.insert(own[faceI]);
if (mesh_.isInternalFace(faceI))
{
affectedCells.insert(nei[faceI]);
}
}
return affectedCells.toc();
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
// Construct from components
Foam::primitiveMeshGeometry::primitiveMeshGeometry
(
const primitiveMesh& mesh
)
:
mesh_(mesh)
{
correct();
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
//- Take over properties from mesh
void Foam::primitiveMeshGeometry::correct()
{
faceAreas_ = mesh_.faceAreas();
faceCentres_ = mesh_.faceCentres();
cellCentres_ = mesh_.cellCentres();
cellVolumes_ = mesh_.cellVolumes();
}
//- Recalculate on selected faces
void Foam::primitiveMeshGeometry::correct
(
const pointField& p,
const labelList& changedFaces
)
{
// Update face quantities
updateFaceCentresAndAreas(p, changedFaces);
// Update cell quantities from face quantities
updateCellCentresAndVols(affectedCells(changedFaces), changedFaces);
}
bool Foam::primitiveMeshGeometry::checkFaceDotProduct
(
const bool report,
const scalar orthWarn,
const primitiveMesh& mesh,
const vectorField& cellCentres,
const vectorField& faceAreas,
const labelList& checkFaces,
labelHashSet* setPtr
)
{
// for all internal faces check theat the d dot S product is positive
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
// Severe nonorthogonality threshold
const scalar severeNonorthogonalityThreshold =
::cos(orthWarn/180.0*mathematicalConstant::pi);
scalar minDDotS = GREAT;
scalar sumDDotS = 0;
label severeNonOrth = 0;
label errorNonOrth = 0;
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
if (mesh.isInternalFace(faceI))
{
vector d = cellCentres[nei[faceI]] - cellCentres[own[faceI]];
const vector& s = faceAreas[faceI];
scalar dDotS = (d & s)/(mag(d)*mag(s) + VSMALL);
if (dDotS < severeNonorthogonalityThreshold)
{
if (dDotS > SMALL)
{
if (report)
{
// Severe non-orthogonality but mesh still OK
Pout<< "Severe non-orthogonality for face " << faceI
<< " between cells " << own[faceI]
<< " and " << nei[faceI]
<< ": Angle = "
<< ::acos(dDotS)/mathematicalConstant::pi*180.0
<< " deg." << endl;
}
if (setPtr)
{
setPtr->insert(faceI);
}
severeNonOrth++;
}
else
{
// Non-orthogonality greater than 90 deg
if (report)
{
WarningIn
(
"primitiveMeshGeometry::checkFaceDotProduct"
"(const bool, const scalar, const labelList&"
", labelHashSet*)"
) << "Severe non-orthogonality detected for face "
<< faceI
<< " between cells " << own[faceI] << " and "
<< nei[faceI]
<< ": Angle = "
<< ::acos(dDotS)/mathematicalConstant::pi*180.0
<< " deg." << endl;
}
errorNonOrth++;
if (setPtr)
{
setPtr->insert(faceI);
}
}
}
if (dDotS < minDDotS)
{
minDDotS = dDotS;
}
sumDDotS += dDotS;
}
}
reduce(minDDotS, minOp<scalar>());
reduce(sumDDotS, sumOp<scalar>());
reduce(severeNonOrth, sumOp<label>());
reduce(errorNonOrth, sumOp<label>());
label neiSize = nei.size();
reduce(neiSize, sumOp<label>());
// Only report if there are some internal faces
if (neiSize > 0)
{
if (report && minDDotS < severeNonorthogonalityThreshold)
{
Info<< "Number of non-orthogonality errors: " << errorNonOrth
<< ". Number of severely non-orthogonal faces: "
<< severeNonOrth << "." << endl;
}
}
if (report)
{
if (neiSize > 0)
{
Info<< "Mesh non-orthogonality Max: "
<< ::acos(minDDotS)/mathematicalConstant::pi*180.0
<< " average: " <<
::acos(sumDDotS/neiSize)/mathematicalConstant::pi*180.0
<< endl;
}
}
if (errorNonOrth > 0)
{
if (report)
{
SeriousErrorIn
(
"primitiveMeshGeometry::checkFaceDotProduct"
"(const bool, const scalar, const labelList&, labelHashSet*)"
) << "Error in non-orthogonality detected" << endl;
}
return true;
}
else
{
if (report)
{
Info<< "Non-orthogonality check OK.\n" << endl;
}
return false;
}
}
bool Foam::primitiveMeshGeometry::checkFacePyramids
(
const bool report,
const scalar minPyrVol,
const primitiveMesh& mesh,
const vectorField& cellCentres,
const pointField& p,
const labelList& checkFaces,
labelHashSet* setPtr
)
{
// check whether face area vector points to the cell with higher label
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const faceList& f = mesh.faces();
label nErrorPyrs = 0;
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
// Create the owner pyramid - it will have negative volume
scalar pyrVol = pyramidPointFaceRef
(
f[faceI],
cellCentres[own[faceI]]
).mag(p);
if (pyrVol > -minPyrVol)
{
if (report)
{
Pout<< "bool primitiveMeshGeometry::checkFacePyramids("
<< "const bool, const scalar, const pointField&"
<< ", const labelList&, labelHashSet*): "
<< "face " << faceI << " points the wrong way. " << endl
<< "Pyramid volume: " << -pyrVol
<< " Face " << f[faceI] << " area: " << f[faceI].mag(p)
<< " Owner cell: " << own[faceI] << endl
<< "Owner cell vertex labels: "
<< mesh.cells()[own[faceI]].labels(f)
<< endl;
}
if (setPtr)
{
setPtr->insert(faceI);
}
nErrorPyrs++;
}
if (mesh.isInternalFace(faceI))
{
// Create the neighbour pyramid - it will have positive volume
scalar pyrVol =
pyramidPointFaceRef(f[faceI], cellCentres[nei[faceI]]).mag(p);
if (pyrVol < minPyrVol)
{
if (report)
{
Pout<< "bool primitiveMeshGeometry::checkFacePyramids("
<< "const bool, const scalar, const pointField&"
<< ", const labelList&, labelHashSet*): "
<< "face " << faceI << " points the wrong way. " << endl
<< "Pyramid volume: " << -pyrVol
<< " Face " << f[faceI] << " area: " << f[faceI].mag(p)
<< " Neighbour cell: " << nei[faceI] << endl
<< "Neighbour cell vertex labels: "
<< mesh.cells()[nei[faceI]].labels(f)
<< endl;
}
if (setPtr)
{
setPtr->insert(faceI);
}
nErrorPyrs++;
}
}
}
reduce(nErrorPyrs, sumOp<label>());
if (nErrorPyrs > 0)
{
if (report)
{
SeriousErrorIn
(
"primitiveMeshGeometry::checkFacePyramids("
"const bool, const scalar, const pointField&"
", const labelList&, labelHashSet*)"
) << "Error in face pyramids: faces pointing the wrong way!"
<< endl;
}
return true;
}
else
{
if (report)
{
Info<< "Face pyramids OK.\n" << endl;
}
return false;
}
}
bool Foam::primitiveMeshGeometry::checkFaceSkewness
(
const bool report,
const scalar internalSkew,
const scalar boundarySkew,
const primitiveMesh& mesh,
const vectorField& cellCentres,
const vectorField& faceCentres,
const vectorField& faceAreas,
const labelList& checkFaces,
labelHashSet* setPtr
)
{
// Warn if the skew correction vector is more than skew times
// larger than the face area vector
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
scalar maxSkew = 0;
label nWarnSkew = 0;
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
if (mesh.isInternalFace(faceI))
{
scalar dOwn = mag(faceCentres[faceI] - cellCentres[own[faceI]]);
scalar dNei = mag(faceCentres[faceI] - cellCentres[nei[faceI]]);
point faceIntersection =
cellCentres[own[faceI]]*dNei/(dOwn+dNei)
+ cellCentres[nei[faceI]]*dOwn/(dOwn+dNei);
scalar skewness =
mag(faceCentres[faceI] - faceIntersection)
/ (
mag(cellCentres[nei[faceI]]-cellCentres[own[faceI]])
+ VSMALL
);
// Check if the skewness vector is greater than the PN vector.
// This does not cause trouble but is a good indication of a poor
// mesh.
if (skewness > internalSkew)
{
if (report)
{
Pout<< "Severe skewness for face " << faceI
<< " skewness = " << skewness << endl;
}
if (setPtr)
{
setPtr->insert(faceI);
}
nWarnSkew++;
}
if (skewness > maxSkew)
{
maxSkew = skewness;
}
}
else
{
// Boundary faces: consider them to have only skewness error.
// (i.e. treat as if mirror cell on other side)
vector faceNormal = faceAreas[faceI];
faceNormal /= mag(faceNormal) + VSMALL;
vector dOwn = faceCentres[faceI] - cellCentres[own[faceI]];
vector dWall = faceNormal*(faceNormal & dOwn);
point faceIntersection = cellCentres[own[faceI]] + dWall;
scalar skewness =
mag(faceCentres[faceI] - faceIntersection)
/(2*mag(dWall) + VSMALL);
// Check if the skewness vector is greater than the PN vector.
// This does not cause trouble but is a good indication of a poor
// mesh.
if (skewness > boundarySkew)
{
if (report)
{
Pout<< "Severe skewness for boundary face " << faceI
<< " skewness = " << skewness << endl;
}
if (setPtr)
{
setPtr->insert(faceI);
}
nWarnSkew++;
}
if (skewness > maxSkew)
{
maxSkew = skewness;
}
}
}
reduce(maxSkew, maxOp<scalar>());
reduce(nWarnSkew, sumOp<label>());
if (nWarnSkew > 0)
{
if (report)
{
WarningIn
(
"primitiveMeshGeometry::checkFaceSkewness"
"(const bool, const scalar, const labelList&, labelHashSet*)"
) << "Large face skewness detected. Max skewness = "
<< 100*maxSkew
<< " percent.\nThis may impair the quality of the result." << nl
<< nWarnSkew << " highly skew faces detected."
<< endl;
}
return true;
}
else
{
if (report)
{
Info<< "Max skewness = " << 100*maxSkew
<< " percent. Face skewness OK.\n" << endl;
}
return false;
}
}
bool Foam::primitiveMeshGeometry::checkFaceWeights
(
const bool report,
const scalar warnWeight,
const primitiveMesh& mesh,
const vectorField& cellCentres,
const vectorField& faceCentres,
const vectorField& faceAreas,
const labelList& checkFaces,
labelHashSet* setPtr
)
{
// Warn if the delta factor (0..1) is too large.
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
scalar minWeight = GREAT;
label nWarnWeight = 0;
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
if (mesh.isInternalFace(faceI))
{
const point& fc = faceCentres[faceI];
scalar dOwn = mag(faceAreas[faceI] & (fc-cellCentres[own[faceI]]));
scalar dNei = mag(faceAreas[faceI] & (cellCentres[nei[faceI]]-fc));
scalar weight = min(dNei,dOwn)/(dNei+dOwn);
if (weight < warnWeight)
{
if (report)
{
Pout<< "Small weighting factor for face " << faceI
<< " weight = " << weight << endl;
}
if (setPtr)
{
setPtr->insert(faceI);
}
nWarnWeight++;
}
minWeight = min(minWeight, weight);
}
}
reduce(minWeight, minOp<scalar>());
reduce(nWarnWeight, sumOp<label>());
if (minWeight < warnWeight)
{
if (report)
{
WarningIn
(
"primitiveMeshGeometry::checkFaceWeights"
"(const bool, const scalar, const labelList&, labelHashSet*)"
) << "Small interpolation weight detected. Min weight = "
<< minWeight << '.' << nl
<< nWarnWeight << " faces with small weights detected."
<< endl;
}
return true;
}
else
{
if (report)
{
Info<< "Min weight = " << minWeight
<< " percent. Weights OK.\n" << endl;
}
return false;
}
}
// Check convexity of angles in a face. Allow a slight non-convexity.
// E.g. maxDeg = 10 allows for angles < 190 (or 10 degrees concavity)
// (if truly concave and points not visible from face centre the face-pyramid
// check in checkMesh will fail)
bool Foam::primitiveMeshGeometry::checkFaceAngles
(
const bool report,
const scalar maxDeg,
const primitiveMesh& mesh,
const vectorField& faceAreas,
const pointField& p,
const labelList& checkFaces,
labelHashSet* setPtr
)
{
if (maxDeg < -SMALL || maxDeg > 180+SMALL)
{
FatalErrorIn
(
"primitiveMeshGeometry::checkFaceAngles"
"(const bool, const scalar, const pointField&, const labelList&"
", labelHashSet*)"
) << "maxDeg should be [0..180] but is now " << maxDeg
<< abort(FatalError);
}
const scalar maxSin = Foam::sin(maxDeg/180.0*mathematicalConstant::pi);
const faceList& fcs = mesh.faces();
scalar maxEdgeSin = 0.0;
label nConcave = 0;
label errorFaceI = -1;
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
const face& f = fcs[faceI];
vector faceNormal = faceAreas[faceI];
faceNormal /= mag(faceNormal) + VSMALL;
// Get edge from f[0] to f[size-1];
vector ePrev(p[f[0]] - p[f[f.size()-1]]);
scalar magEPrev = mag(ePrev);
ePrev /= magEPrev + VSMALL;
forAll(f, fp0)
{
// Get vertex after fp
label fp1 = f.fcIndex(fp0);
// Normalized vector between two consecutive points
vector e10(p[f[fp1]] - p[f[fp0]]);
scalar magE10 = mag(e10);
e10 /= magE10 + VSMALL;
if (magEPrev > SMALL && magE10 > SMALL)
{
vector edgeNormal = ePrev ^ e10;
scalar magEdgeNormal = mag(edgeNormal);
if (magEdgeNormal < maxSin)
{
// Edges (almost) aligned -> face is ok.
}
else
{
// Check normal
edgeNormal /= magEdgeNormal;
if ((edgeNormal & faceNormal) < SMALL)
{
if (faceI != errorFaceI)
{
// Count only one error per face.
errorFaceI = faceI;
nConcave++;
}
if (setPtr)
{
setPtr->insert(faceI);
}
maxEdgeSin = max(maxEdgeSin, magEdgeNormal);
}
}
}
ePrev = e10;
magEPrev = magE10;
}
}
reduce(nConcave, sumOp<label>());
reduce(maxEdgeSin, maxOp<scalar>());
if (report)
{
if (maxEdgeSin > SMALL)
{
scalar maxConcaveDegr =
Foam::asin(Foam::min(1.0, maxEdgeSin))
* 180.0/mathematicalConstant::pi;
Info<< "There are " << nConcave
<< " faces with concave angles between consecutive"
<< " edges. Max concave angle = " << maxConcaveDegr
<< " degrees.\n" << endl;
}
else
{
Info<< "All angles in faces are convex or less than " << maxDeg
<< " degrees concave.\n" << endl;
}
}
if (nConcave > 0)
{
if (report)
{
WarningIn
(
"primitiveMeshGeometry::checkFaceAngles"
"(const bool, const scalar, const pointField&"
", const labelList&, labelHashSet*)"
) << nConcave << " face points with severe concave angle (> "
<< maxDeg << " deg) found.\n"
<< endl;
}
return true;
}
else
{
return false;
}
}
//// Check warpage of faces. Is calculated as the difference between areas of
//// individual triangles and the overall area of the face (which ifself is
//// is the average of the areas of the individual triangles).
//bool Foam::primitiveMeshGeometry::checkFaceFlatness
//(
// const bool report,
// const scalar warnFlatness,
// const primitiveMesh& mesh,
// const vectorField& faceAreas,
// const vectorField& faceCentres,
// const pointField& p,
// const labelList& checkFaces,
// labelHashSet* setPtr
//)
//{
// if (warnFlatness < 0 || warnFlatness > 1)
// {
// FatalErrorIn
// (
// "primitiveMeshGeometry::checkFaceFlatness"
// "(const bool, const scalar, const pointField&"
// ", const labelList&, labelHashSet*)"
// ) << "warnFlatness should be [0..1] but is now " << warnFlatness
// << abort(FatalError);
// }
//
//
// const faceList& fcs = mesh.faces();
//
// // Areas are calculated as the sum of areas. (see
// // primitiveMeshFaceCentresAndAreas.C)
//
// label nWarped = 0;
//
// scalar minFlatness = GREAT;
// scalar sumFlatness = 0;
// label nSummed = 0;
//
// forAll(checkFaces, i)
// {
// label faceI = checkFaces[i];
//
// const face& f = fcs[faceI];
//
// scalar magArea = mag(faceAreas[faceI]);
//
// if (f.size() > 3 && magArea > VSMALL)
// {
// const point& fc = faceCentres[faceI];
//
// // Calculate the sum of magnitude of areas and compare to magnitude
// // of sum of areas.
//
// scalar sumA = 0.0;
//
// forAll(f, fp)
// {
// const point& thisPoint = p[f[fp]];
// const point& nextPoint = p[f.nextLabel(fp)];
//
// // Triangle around fc.
// vector n = 0.5*((nextPoint - thisPoint)^(fc - thisPoint));
// sumA += mag(n);
// }
//
// scalar flatness = magArea / (sumA+VSMALL);
//
// sumFlatness += flatness;
// nSummed++;
//
// minFlatness = min(minFlatness, flatness);
//
// if (flatness < warnFlatness)
// {
// nWarped++;
//
// if (setPtr)
// {
// setPtr->insert(faceI);
// }
// }
// }
// }
//
//
// reduce(nWarped, sumOp<label>());
// reduce(minFlatness, minOp<scalar>());
//
// reduce(nSummed, sumOp<label>());
// reduce(sumFlatness, sumOp<scalar>());
//
// if (report)
// {
// if (nSummed > 0)
// {
// Info<< "Face flatness (1 = flat, 0 = butterfly) : average = "
// << sumFlatness / nSummed << " min = " << minFlatness << endl;
// }
//
// if (nWarped> 0)
// {
// Info<< "There are " << nWarped
// << " faces with ratio between projected and actual area < "
// << warnFlatness
// << ".\nMinimum ratio (minimum flatness, maximum warpage) = "
// << minFlatness << nl << endl;
// }
// else
// {
// Info<< "All faces are flat in that the ratio between projected"
// << " and actual area is > " << warnFlatness << nl << endl;
// }
// }
//
// if (nWarped > 0)
// {
// if (report)
// {
// WarningIn
// (
// "primitiveMeshGeometry::checkFaceFlatness"
// "(const bool, const scalar, const pointField&"
// ", const labelList&, labelHashSet*)"
// ) << nWarped << " faces with severe warpage (flatness < "
// << warnFlatness << ") found.\n"
// << endl;
// }
//
// return true;
// }
// else
// {
// return false;
// }
//}
// Check twist of faces. Is calculated as the difference between areas of
// individual triangles and the overall area of the face (which ifself is
// is the average of the areas of the individual triangles).
bool Foam::primitiveMeshGeometry::checkFaceTwist
(
const bool report,
const scalar minTwist,
const primitiveMesh& mesh,
const vectorField& faceAreas,
const vectorField& faceCentres,
const pointField& p,
const labelList& checkFaces,
labelHashSet* setPtr
)
{
if (minTwist < -1-SMALL || minTwist > 1+SMALL)
{
FatalErrorIn
(
"primitiveMeshGeometry::checkFaceTwist"
"(const bool, const scalar, const primitiveMesh&, const pointField&"
", const labelList&, labelHashSet*)"
) << "minTwist should be [-1..1] but is now " << minTwist
<< abort(FatalError);
}
const faceList& fcs = mesh.faces();
// Areas are calculated as the sum of areas. (see
// primitiveMeshFaceCentresAndAreas.C)
label nWarped = 0;
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
const face& f = fcs[faceI];
scalar magArea = mag(faceAreas[faceI]);
if (f.size() > 3 && magArea > VSMALL)
{
const vector nf = faceAreas[faceI] / magArea;
const point& fc = faceCentres[faceI];
forAll(f, fpI)
{
vector triArea
(
triPointRef
(
p[f[fpI]],
p[f.nextLabel(fpI)],
fc
).normal()
);
scalar magTri = mag(triArea);
if (magTri > VSMALL && ((nf & triArea/magTri) < minTwist))
{
nWarped++;
if (setPtr)
{
setPtr->insert(faceI);
}
}
}
}
}
reduce(nWarped, sumOp<label>());
if (report)
{
if (nWarped> 0)
{
Info<< "There are " << nWarped
<< " faces with cosine of the angle"
<< " between triangle normal and face normal less than "
<< minTwist << nl << endl;
}
else
{
Info<< "All faces are flat in that the cosine of the angle"
<< " between triangle normal and face normal less than "
<< minTwist << nl << endl;
}
}
if (nWarped > 0)
{
if (report)
{
WarningIn
(
"primitiveMeshGeometry::checkFaceTwist"
"(const bool, const scalar, const primitiveMesh&"
", const pointField&, const labelList&, labelHashSet*)"
) << nWarped << " faces with severe warpage "
<< "(cosine of the angle between triangle normal and face normal"
<< " < " << minTwist << ") found.\n"
<< endl;
}
return true;
}
else
{
return false;
}
}
bool Foam::primitiveMeshGeometry::checkFaceArea
(
const bool report,
const scalar minArea,
const primitiveMesh& mesh,
const vectorField& faceAreas,
const labelList& checkFaces,
labelHashSet* setPtr
)
{
label nZeroArea = 0;
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
if (mag(faceAreas[faceI]) < minArea)
{
if (setPtr)
{
setPtr->insert(faceI);
}
nZeroArea++;
}
}
reduce(nZeroArea, sumOp<label>());
if (report)
{
if (nZeroArea > 0)
{
Info<< "There are " << nZeroArea
<< " faces with area < " << minArea << '.' << nl << endl;
}
else
{
Info<< "All faces have area > " << minArea << '.' << nl << endl;
}
}
if (nZeroArea > 0)
{
if (report)
{
WarningIn
(
"primitiveMeshGeometry::checkFaceArea"
"(const bool, const scalar, const primitiveMesh&"
", const pointField&, const labelList&, labelHashSet*)"
) << nZeroArea << " faces with area < " << minArea
<< " found.\n"
<< endl;
}
return true;
}
else
{
return false;
}
}
bool Foam::primitiveMeshGeometry::checkCellDeterminant
(
const bool report,
const scalar warnDet,
const primitiveMesh& mesh,
const vectorField& faceAreas,
const labelList& checkFaces,
const labelList& affectedCells,
labelHashSet* setPtr
)
{
const cellList& cells = mesh.cells();
scalar minDet = GREAT;
scalar sumDet = 0.0;
label nSumDet = 0;
label nWarnDet = 0;
forAll(affectedCells, i)
{
const cell& cFaces = cells[affectedCells[i]];
tensor areaSum(tensor::zero);
scalar magAreaSum = 0;
forAll(cFaces, cFaceI)
{
label faceI = cFaces[cFaceI];
scalar magArea = mag(faceAreas[faceI]);
magAreaSum += magArea;
areaSum += faceAreas[faceI]*(faceAreas[faceI]/magArea);
}
scalar scaledDet = det(areaSum/magAreaSum)/0.037037037037037;
minDet = min(minDet, scaledDet);
sumDet += scaledDet;
nSumDet++;
if (scaledDet < warnDet)
{
if (setPtr)
{
// Insert all faces of the cell.
forAll(cFaces, cFaceI)
{
label faceI = cFaces[cFaceI];
setPtr->insert(faceI);
}
}
nWarnDet++;
}
}
reduce(minDet, minOp<scalar>());
reduce(sumDet, sumOp<scalar>());
reduce(nSumDet, sumOp<label>());
reduce(nWarnDet, sumOp<label>());
if (report)
{
if (nSumDet > 0)
{
Info<< "Cell determinant (1 = uniform cube) : average = "
<< sumDet / nSumDet << " min = " << minDet << endl;
}
if (nWarnDet > 0)
{
Info<< "There are " << nWarnDet
<< " cells with determinant < " << warnDet << '.' << nl
<< endl;
}
else
{
Info<< "All faces have determinant > " << warnDet << '.' << nl
<< endl;
}
}
if (nWarnDet > 0)
{
if (report)
{
WarningIn
(
"primitiveMeshGeometry::checkCellDeterminant"
"(const bool, const scalar, const primitiveMesh&"
", const pointField&, const labelList&, const labelList&"
", labelHashSet*)"
) << nWarnDet << " cells with determinant < " << warnDet
<< " found.\n"
<< endl;
}
return true;
}
else
{
return false;
}
}
bool Foam::primitiveMeshGeometry::checkFaceDotProduct
(
const bool report,
const scalar orthWarn,
const labelList& checkFaces,
labelHashSet* setPtr
) const
{
return checkFaceDotProduct
(
report,
orthWarn,
mesh_,
cellCentres_,
faceAreas_,
checkFaces,
setPtr
);
}
bool Foam::primitiveMeshGeometry::checkFacePyramids
(
const bool report,
const scalar minPyrVol,
const pointField& p,
const labelList& checkFaces,
labelHashSet* setPtr
) const
{
return checkFacePyramids
(
report,
minPyrVol,
mesh_,
cellCentres_,
p,
checkFaces,
setPtr
);
}
bool Foam::primitiveMeshGeometry::checkFaceSkewness
(
const bool report,
const scalar internalSkew,
const scalar boundarySkew,
const labelList& checkFaces,
labelHashSet* setPtr
) const
{
return checkFaceSkewness
(
report,
internalSkew,
boundarySkew,
mesh_,
cellCentres_,
faceCentres_,
faceAreas_,
checkFaces,
setPtr
);
}
bool Foam::primitiveMeshGeometry::checkFaceWeights
(
const bool report,
const scalar warnWeight,
const labelList& checkFaces,
labelHashSet* setPtr
) const
{
return checkFaceWeights
(
report,
warnWeight,
mesh_,
cellCentres_,
faceCentres_,
faceAreas_,
checkFaces,
setPtr
);
}
bool Foam::primitiveMeshGeometry::checkFaceAngles
(
const bool report,
const scalar maxDeg,
const pointField& p,
const labelList& checkFaces,
labelHashSet* setPtr
) const
{
return checkFaceAngles
(
report,
maxDeg,
mesh_,
faceAreas_,
p,
checkFaces,
setPtr
);
}
//bool Foam::primitiveMeshGeometry::checkFaceFlatness
//(
// const bool report,
// const scalar warnFlatness,
// const pointField& p,
// const labelList& checkFaces,
// labelHashSet* setPtr
//) const
//{
// return checkFaceFlatness
// (
// report,
// warnFlatness,
// mesh_,
// faceAreas_,
// faceCentres_,
// p,
// checkFaces,
// setPtr
// );
//}
bool Foam::primitiveMeshGeometry::checkFaceTwist
(
const bool report,
const scalar minTwist,
const pointField& p,
const labelList& checkFaces,
labelHashSet* setPtr
) const
{
return checkFaceTwist
(
report,
minTwist,
mesh_,
faceAreas_,
faceCentres_,
p,
checkFaces,
setPtr
);
}
bool Foam::primitiveMeshGeometry::checkFaceArea
(
const bool report,
const scalar minArea,
const labelList& checkFaces,
labelHashSet* setPtr
) const
{
return checkFaceArea
(
report,
minArea,
mesh_,
faceAreas_,
checkFaces,
setPtr
);
}
bool Foam::primitiveMeshGeometry::checkCellDeterminant
(
const bool report,
const scalar warnDet,
const labelList& checkFaces,
const labelList& affectedCells,
labelHashSet* setPtr
) const
{
return checkCellDeterminant
(
report,
warnDet,
mesh_,
faceAreas_,
checkFaces,
affectedCells,
setPtr
);
}
// ************************************************************************* //