Files
openfoam/applications/solvers/multiphase/MPPICInterFoam/alphaEqn.H
sergio 40b0cbd8d1 1)Adding alphaEqn.H and alphaEqnSubCycle.H specialized version for MPPICInterFoam
2)Adapting divU in TEqn.H for compressibleInterDyMFoam and compressibleInterFoam
3)Re-instated sixDoFRigidBodyDisplacement as patch for pointFields. It allows to use a different fvDynamincMesh type
independently of the BC's
2017-06-02 13:33:33 -07:00

259 lines
6.6 KiB
C

{
word alphaScheme("div(phi,alpha)");
word alpharScheme("div(phirb,alpha)");
// Set the off-centering coefficient according to ddt scheme
scalar ocCoeff = 0;
{
tmp<fv::ddtScheme<scalar>> tddtAlpha
(
fv::ddtScheme<scalar>::New
(
mesh,
mesh.ddtScheme("ddt(alpha)")
)
);
const fv::ddtScheme<scalar>& ddtAlpha = tddtAlpha();
if
(
isType<fv::EulerDdtScheme<scalar>>(ddtAlpha)
|| isType<fv::localEulerDdtScheme<scalar>>(ddtAlpha)
)
{
ocCoeff = 0;
}
else if (isType<fv::CrankNicolsonDdtScheme<scalar>>(ddtAlpha))
{
if (nAlphaSubCycles > 1)
{
FatalErrorInFunction
<< "Sub-cycling is not supported "
"with the CrankNicolson ddt scheme"
<< exit(FatalError);
}
if
(
alphaRestart
|| mesh.time().timeIndex() > mesh.time().startTimeIndex() + 1
)
{
ocCoeff =
refCast<const fv::CrankNicolsonDdtScheme<scalar>>(ddtAlpha)
.ocCoeff();
}
}
else
{
FatalErrorInFunction
<< "Only Euler and CrankNicolson ddt schemes are supported"
<< exit(FatalError);
}
}
// Set the time blending factor, 1 for Euler
scalar cnCoeff = 1.0/(1.0 + ocCoeff);
// Standard face-flux compression coefficient
surfaceScalarField phic(mixture.cAlpha()*mag(alphaPhic/mesh.magSf()));
// Add the optional isotropic compression contribution
if (icAlpha > 0)
{
phic *= (1.0 - icAlpha);
phic += (mixture.cAlpha()*icAlpha)*fvc::interpolate(mag(U));
}
surfaceScalarField::Boundary& phicBf =
phic.boundaryFieldRef();
// Do not compress interface at non-coupled boundary faces
// (inlets, outlets etc.)
forAll(phic.boundaryField(), patchi)
{
fvsPatchScalarField& phicp = phicBf[patchi];
if (!phicp.coupled())
{
phicp == 0;
}
}
tmp<surfaceScalarField> phiCN(alphaPhic);
// Calculate the Crank-Nicolson off-centred volumetric flux
if (ocCoeff > 0)
{
phiCN = cnCoeff*alphaPhic + (1.0 - cnCoeff)*alphaPhic.oldTime();
}
if (MULESCorr)
{
#include "alphaSuSp.H"
fvScalarMatrix alpha1Eqn
(
(
LTS
? fv::localEulerDdtScheme<scalar>(mesh).fvmDdt(alphac, alpha1)
: fv::EulerDdtScheme<scalar>(mesh).fvmDdt(alpha1)
)
+ fv::gaussConvectionScheme<scalar>
(
mesh,
phiCN,
upwind<scalar>(mesh, phiCN)
).fvmDiv(phiCN, alpha1)
- fvm::Sp(fvc::ddt(alphac) + fvc::div(phiCN), alpha1)
==
Su + fvm::Sp(Sp + divU, alpha1)
);
alpha1Eqn.solve();
Info<< "Phase-1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value()
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
<< " Max(" << alpha1.name() << ") = " << max(alpha1).value()
<< endl;
tmp<surfaceScalarField> talphaPhiUD(alpha1Eqn.flux());
alphaPhi = talphaPhiUD();
if (alphaApplyPrevCorr && talphaPhiCorr0.valid())
{
Info<< "Applying the previous iteration compression flux" << endl;
MULES::correct
(
alphac,
alpha1,
alphaPhi,
talphaPhiCorr0.ref(),
zeroField(), zeroField(),
1, 0
);
alphaPhi += talphaPhiCorr0();
}
// Cache the upwind-flux
talphaPhiCorr0 = talphaPhiUD;
alpha2 = 1.0 - alpha1;
mixture.correct();
}
for (int aCorr=0; aCorr<nAlphaCorr; aCorr++)
{
#include "alphaSuSp.H"
surfaceScalarField phir(phic*mixture.nHatf());
tmp<surfaceScalarField> talphaPhiUn
(
fvc::flux
(
phiCN(),
cnCoeff*alpha1 + (1.0 - cnCoeff)*alpha1.oldTime(),
alphaScheme
)
+ fvc::flux
(
-fvc::flux(-phir, alpha2, alpharScheme),
alpha1,
alpharScheme
)
);
if (MULESCorr)
{
tmp<surfaceScalarField> talphaPhiCorr(talphaPhiUn() - alphaPhi);
volScalarField alpha10("alpha10", alpha1);
MULES::correct
(
alphac,
alpha1,
talphaPhiUn(),
talphaPhiCorr.ref(),
Sp,
(-Sp*alpha1)(),
1,
0
);
// Under-relax the correction for all but the 1st corrector
if (aCorr == 0)
{
alphaPhi += talphaPhiCorr();
}
else
{
alpha1 = 0.5*alpha1 + 0.5*alpha10;
alphaPhi += 0.5*talphaPhiCorr();
}
}
else
{
alphaPhi = talphaPhiUn;
MULES::explicitSolve
(
alphac,
alpha1,
phiCN,
alphaPhi,
Sp,
(Su + divU*min(alpha1(), scalar(1)))(),
1,
0
);
}
alpha2 = 1.0 - alpha1;
mixture.correct();
}
if (alphaApplyPrevCorr && MULESCorr)
{
talphaPhiCorr0 = alphaPhi - talphaPhiCorr0;
talphaPhiCorr0.ref().rename("alphaPhiCorr0");
}
else
{
talphaPhiCorr0.clear();
}
if
(
word(mesh.ddtScheme("ddt(rho,U)"))
== fv::EulerDdtScheme<vector>::typeName
)
{
#include "rhofs.H"
rhoPhi = alphaPhi*(rho1f - rho2f) + phiCN*rho2f;
}
else
{
if (ocCoeff > 0)
{
// Calculate the end-of-time-step alpha flux
alphaPhi = (alphaPhi - (1.0 - cnCoeff)*alphaPhi.oldTime())/cnCoeff;
}
// Calculate the end-of-time-step mass flux
#include "rhofs.H"
rhoPhi = alphaPhi*(rho1f - rho2f) + alphaPhic*rho2f;
}
Info<< "Phase-1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value()
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
<< " Max(" << alpha1.name() << ") = " << max(alpha1).value()
<< endl;
}