Files
openfoam/src/finiteVolume/fvMatrices/fvMatrix/fvMatrixSolve.C
2016-06-20 21:20:31 +02:00

372 lines
9.4 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation | Copyright (C) 2016 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "LduMatrix.H"
#include "diagTensorField.H"
#include "profiling.H"
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class Type>
void Foam::fvMatrix<Type>::setComponentReference
(
const label patchi,
const label facei,
const direction cmpt,
const scalar value
)
{
if (psi_.needReference())
{
if (Pstream::master())
{
internalCoeffs_[patchi][facei].component(cmpt) +=
diag()[psi_.mesh().boundary()[patchi].faceCells()[facei]];
boundaryCoeffs_[patchi][facei].component(cmpt) +=
diag()[psi_.mesh().boundary()[patchi].faceCells()[facei]]
*value;
}
}
}
template<class Type>
Foam::SolverPerformance<Type> Foam::fvMatrix<Type>::solve
(
const dictionary& solverControls
)
{
addProfiling(solve, "fvMatrix::solve." + psi_.name());
if (debug)
{
Info.masterStream(this->mesh().comm())
<< "fvMatrix<Type>::solve(const dictionary& solverControls) : "
"solving fvMatrix<Type>"
<< endl;
}
label maxIter = -1;
if (solverControls.readIfPresent("maxIter", maxIter))
{
if (maxIter == 0)
{
return SolverPerformance<Type>();
}
}
word type(solverControls.lookupOrDefault<word>("type", "segregated"));
if (type == "segregated")
{
return solveSegregated(solverControls);
}
else if (type == "coupled")
{
return solveCoupled(solverControls);
}
else
{
FatalIOErrorInFunction
(
solverControls
) << "Unknown type " << type
<< "; currently supported solver types are segregated and coupled"
<< exit(FatalIOError);
return SolverPerformance<Type>();
}
}
template<class Type>
Foam::SolverPerformance<Type> Foam::fvMatrix<Type>::solveSegregated
(
const dictionary& solverControls
)
{
if (debug)
{
Info.masterStream(this->mesh().comm())
<< "fvMatrix<Type>::solveSegregated"
"(const dictionary& solverControls) : "
"solving fvMatrix<Type>"
<< endl;
}
GeometricField<Type, fvPatchField, volMesh>& psi =
const_cast<GeometricField<Type, fvPatchField, volMesh>&>(psi_);
SolverPerformance<Type> solverPerfVec
(
"fvMatrix<Type>::solveSegregated",
psi.name()
);
scalarField saveDiag(diag());
Field<Type> source(source_);
// At this point include the boundary source from the coupled boundaries.
// This is corrected for the implict part by updateMatrixInterfaces within
// the component loop.
addBoundarySource(source);
typename Type::labelType validComponents
(
psi.mesh().template validComponents<Type>()
);
for (direction cmpt=0; cmpt<Type::nComponents; cmpt++)
{
if (validComponents[cmpt] == -1) continue;
// copy field and source
scalarField psiCmpt(psi.internalField().component(cmpt));
addBoundaryDiag(diag(), cmpt);
scalarField sourceCmpt(source.component(cmpt));
FieldField<Field, scalar> bouCoeffsCmpt
(
boundaryCoeffs_.component(cmpt)
);
FieldField<Field, scalar> intCoeffsCmpt
(
internalCoeffs_.component(cmpt)
);
lduInterfaceFieldPtrsList interfaces =
psi.boundaryField().scalarInterfaces();
// Use the initMatrixInterfaces and updateMatrixInterfaces to correct
// bouCoeffsCmpt for the explicit part of the coupled boundary
// conditions
initMatrixInterfaces
(
bouCoeffsCmpt,
interfaces,
psiCmpt,
sourceCmpt,
cmpt
);
updateMatrixInterfaces
(
bouCoeffsCmpt,
interfaces,
psiCmpt,
sourceCmpt,
cmpt
);
solverPerformance solverPerf;
// Solver call
solverPerf = lduMatrix::solver::New
(
psi.name() + pTraits<Type>::componentNames[cmpt],
*this,
bouCoeffsCmpt,
intCoeffsCmpt,
interfaces,
solverControls
)->solve(psiCmpt, sourceCmpt, cmpt);
if (SolverPerformance<Type>::debug)
{
solverPerf.print(Info.masterStream(this->mesh().comm()));
}
solverPerfVec.replace(cmpt, solverPerf);
psi.internalField().replace(cmpt, psiCmpt);
diag() = saveDiag;
}
psi.correctBoundaryConditions();
psi.mesh().setSolverPerformance(psi.name(), solverPerfVec);
return solverPerfVec;
}
template<class Type>
Foam::SolverPerformance<Type> Foam::fvMatrix<Type>::solveCoupled
(
const dictionary& solverControls
)
{
if (debug)
{
Info.masterStream(this->mesh().comm())
<< "fvMatrix<Type>::solveCoupled"
"(const dictionary& solverControls) : "
"solving fvMatrix<Type>"
<< endl;
}
GeometricField<Type, fvPatchField, volMesh>& psi =
const_cast<GeometricField<Type, fvPatchField, volMesh>&>(psi_);
LduMatrix<Type, scalar, scalar> coupledMatrix(psi.mesh());
coupledMatrix.diag() = diag();
coupledMatrix.upper() = upper();
coupledMatrix.lower() = lower();
coupledMatrix.source() = source();
addBoundaryDiag(coupledMatrix.diag(), 0);
addBoundarySource(coupledMatrix.source(), false);
coupledMatrix.interfaces() = psi.boundaryField().interfaces();
coupledMatrix.interfacesUpper() = boundaryCoeffs().component(0);
coupledMatrix.interfacesLower() = internalCoeffs().component(0);
autoPtr<typename LduMatrix<Type, scalar, scalar>::solver>
coupledMatrixSolver
(
LduMatrix<Type, scalar, scalar>::solver::New
(
psi.name(),
coupledMatrix,
solverControls
)
);
SolverPerformance<Type> solverPerf
(
coupledMatrixSolver->solve(psi)
);
if (SolverPerformance<Type>::debug)
{
solverPerf.print(Info.masterStream(this->mesh().comm()));
}
psi.correctBoundaryConditions();
psi.mesh().setSolverPerformance(psi.name(), solverPerf);
return solverPerf;
}
template<class Type>
Foam::autoPtr<typename Foam::fvMatrix<Type>::fvSolver>
Foam::fvMatrix<Type>::solver()
{
return solver
(
psi_.mesh().solverDict
(
psi_.select
(
psi_.mesh().data::template lookupOrDefault<bool>
("finalIteration", false)
)
)
);
}
template<class Type>
Foam::SolverPerformance<Type> Foam::fvMatrix<Type>::fvSolver::solve()
{
return solve
(
fvMat_.psi_.mesh().solverDict
(
fvMat_.psi_.select
(
fvMat_.psi_.mesh().data::template lookupOrDefault<bool>
("finalIteration", false)
)
)
);
}
template<class Type>
Foam::SolverPerformance<Type> Foam::fvMatrix<Type>::solve()
{
return solve
(
psi_.mesh().solverDict
(
psi_.select
(
psi_.mesh().data::template lookupOrDefault<bool>
("finalIteration", false)
)
)
);
}
template<class Type>
Foam::tmp<Foam::Field<Type>> Foam::fvMatrix<Type>::residual() const
{
tmp<Field<Type>> tres(new Field<Type>(source_));
Field<Type>& res = tres();
addBoundarySource(res);
// Loop over field components
for (direction cmpt=0; cmpt<Type::nComponents; cmpt++)
{
scalarField psiCmpt(psi_.internalField().component(cmpt));
scalarField boundaryDiagCmpt(psi_.size(), 0.0);
addBoundaryDiag(boundaryDiagCmpt, cmpt);
FieldField<Field, scalar> bouCoeffsCmpt
(
boundaryCoeffs_.component(cmpt)
);
res.replace
(
cmpt,
lduMatrix::residual
(
psiCmpt,
res.component(cmpt) - boundaryDiagCmpt*psiCmpt,
bouCoeffsCmpt,
psi_.boundaryField().scalarInterfaces(),
cmpt
)
);
}
return tres;
}
// ************************************************************************* //