Files
openfoam/applications/solvers/multiphase/MPPICInterFoam/alphaEqn.H

165 lines
4.1 KiB
C

{
word alphaScheme("div(phi,alpha)");
word alpharScheme("div(phirb,alpha)");
// Standard face-flux compression coefficient
surfaceScalarField phic
(
mixture.cAlpha()*mag(alphaPhic/mesh.magSf())
);
// Add the optional isotropic compression contribution
if (icAlpha > 0)
{
phic *= (1.0 - icAlpha);
phic += (mixture.cAlpha()*icAlpha)*fvc::interpolate(mag(U));
}
// Do not compress interface at non-coupled boundary faces
// (inlets, outlets etc.)
surfaceScalarField::Boundary& phicBf = phic.boundaryFieldRef();
forAll(phic.boundaryField(), patchi)
{
fvsPatchScalarField& phicp = phicBf[patchi];
if (!phicp.coupled())
{
phicp == 0;
}
}
tmp<surfaceScalarField> tphiAlpha;
if (MULESCorr)
{
fvScalarMatrix alpha1Eqn
(
fv::EulerDdtScheme<scalar>(mesh).fvmDdt(alphac, alpha1)
+ fv::gaussConvectionScheme<scalar>
(
mesh,
alphaPhic,
upwind<scalar>(mesh, alphaPhic)
).fvmDiv(alphaPhic, alpha1)
- fvm::Sp(fvc::ddt(alphac) + fvc::div(alphaPhic), alpha1)
);
alpha1Eqn.solve();
Info<< "Phase-1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value()
<< " Min(alpha1) = " << min(alpha1).value()
<< " Max(alpha1) = " << max(alpha1).value()
<< endl;
tmp<surfaceScalarField> tphiAlphaUD(alpha1Eqn.flux());
alphaPhi = tphiAlphaUD();
if (alphaApplyPrevCorr && tphiAlphaCorr0.valid())
{
Info<< "Applying the previous iteration compression flux" << endl;
MULES::correct
(
alphac,
alpha1,
alphaPhi,
tphiAlphaCorr0.ref(),
zeroField(), zeroField(),
1, 0
);
alphaPhi += tphiAlphaCorr0();
}
// Cache the upwind-flux
tphiAlphaCorr0 = tphiAlphaUD;
alpha2 = 1.0 - alpha1;
mixture.correct();
}
for (int aCorr=0; aCorr<nAlphaCorr; aCorr++)
{
surfaceScalarField phir(phic*mixture.nHatf());
tmp<surfaceScalarField> tphiAlphaUn
(
fvc::flux
(
alphaPhic,
alpha1,
alphaScheme
)
+ fvc::flux
(
-fvc::flux(-phir, alpha2, alpharScheme),
alpha1,
alpharScheme
)
);
if (MULESCorr)
{
tmp<surfaceScalarField> tphiAlphaCorr(tphiAlphaUn() - alphaPhi);
volScalarField alpha10("alpha10", alpha1);
//MULES::correct(alpha1, tphiAlphaUn(), tphiAlphaCorr(), 1, 0);
MULES::correct
(
alphac,
alpha1,
tphiAlphaUn(),
tphiAlphaCorr.ref(),
zeroField(), zeroField(),
1, 0
);
// Under-relax the correction for all but the 1st corrector
if (aCorr == 0)
{
alphaPhi += tphiAlphaCorr();
}
else
{
alpha1 = 0.5*alpha1 + 0.5*alpha10;
alphaPhi += 0.5*tphiAlphaCorr();
}
}
else
{
alphaPhi = tphiAlphaUn;
MULES::explicitSolve
(
alphac,
alpha1,
alphaPhic,
alphaPhi,
zeroField(), zeroField(),
1, 0
);
}
alpha2 = 1.0 - alpha1;
mixture.correct();
}
rhoPhi = alphaPhi*(rho1 - rho2) + alphaPhic*rho2;
if (alphaApplyPrevCorr && MULESCorr)
{
tphiAlphaCorr0 = alphaPhi - tphiAlphaCorr0;
}
Info<< "Phase-1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value()
<< " Min(alpha1) = " << min(alpha1).value()
<< " Max(alpha1) = " << max(alpha1).value()
<< endl;
}