Files
openfoam/src/decompositionAgglomeration/decompositionMethods/metisDecomp/metisDecomp.C

596 lines
17 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
\*---------------------------------------------------------------------------*/
#include "metisDecomp.H"
#include "addToRunTimeSelectionTable.H"
#include "floatScalar.H"
#include "IFstream.H"
#include "Time.H"
#include "cyclicPolyPatch.H"
extern "C"
{
#define OMPI_SKIP_MPICXX
# include "metis.h"
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(metisDecomp, 0);
addToRunTimeSelectionTable
(
decompositionMethod,
metisDecomp,
dictionaryMesh
);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
// Call Metis with options from dictionary.
Foam::label Foam::metisDecomp::decompose
(
const List<int>& adjncy,
const List<int>& xadj,
List<int>& finalDecomp
)
{
// C style numbering
int numFlag = 0;
// Method of decomposition
// recursive: multi-level recursive bisection (default)
// k-way: multi-level k-way
word method("k-way");
// decomposition options. 0 = use defaults
List<int> options(5, 0);
// processor weights initialised with no size, only used if specified in
// a file
Field<floatScalar> processorWeights;
// cell weights (so on the vertices of the dual)
List<int> cellWeights;
// face weights (so on the edges of the dual)
List<int> faceWeights;
// Check for user supplied weights and decomp options
if (decompositionDict_.found("metisCoeffs"))
{
dictionary metisDecompCoeffs
(
decompositionDict_.subDict("metisCoeffs")
);
if (metisDecompCoeffs.found("method"))
{
metisDecompCoeffs.lookup("method") >> method;
if (method != "recursive" && method != "k-way")
{
FatalErrorIn("metisDecomp::decompose()")
<< "Method " << method << " in metisCoeffs in dictionary : "
<< decompositionDict_.name()
<< " should be 'recursive' or 'k-way'"
<< exit(FatalError);
}
Info<< "metisDecomp : Using Metis options " << options
<< endl << endl;
}
if (metisDecompCoeffs.found("options"))
{
metisDecompCoeffs.lookup("options") >> options;
if (options.size() != 5)
{
FatalErrorIn("metisDecomp::decompose()")
<< "Number of options in metisCoeffs in dictionary : "
<< decompositionDict_.name()
<< " should be 5"
<< exit(FatalError);
}
Info<< "metisDecomp : Using Metis options " << options
<< endl << endl;
}
if (metisDecompCoeffs.found("processorWeights"))
{
metisDecompCoeffs.lookup("processorWeights") >> processorWeights;
processorWeights /= sum(processorWeights);
if (processorWeights.size() != nProcessors_)
{
FatalErrorIn("metisDecomp::decompose(const pointField&)")
<< "Number of processor weights "
<< processorWeights.size()
<< " does not equal number of domains " << nProcessors_
<< exit(FatalError);
}
}
if (metisDecompCoeffs.found("cellWeightsFile"))
{
Info<< "metisDecomp : Using cell-based weights." << endl;
word cellWeightsFile
(
metisDecompCoeffs.lookup("cellWeightsFile")
);
IOList<int> cellIOWeights
(
IOobject
(
cellWeightsFile,
mesh_.time().timeName(),
mesh_,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
)
);
cellWeights.transfer(cellIOWeights);
if (cellWeights.size() != xadj.size()-1)
{
FatalErrorIn("metisDecomp::decompose(const pointField&)")
<< "Number of cell weights " << cellWeights.size()
<< " does not equal number of cells " << xadj.size()-1
<< exit(FatalError);
}
}
//- faceWeights disabled. Only makes sense for cellCells from mesh.
//if (metisDecompCoeffs.found("faceWeightsFile"))
//{
// Info<< "metisDecomp : Using face-based weights." << endl;
//
// word faceWeightsFile
// (
// metisDecompCoeffs.lookup("faceWeightsFile")
// );
//
// IOList<int> weights
// (
// IOobject
// (
// faceWeightsFile,
// mesh_.time().timeName(),
// mesh_,
// IOobject::MUST_READ,
// IOobject::AUTO_WRITE
// )
// );
//
// if (weights.size() != adjncy.size()/2)
// {
// FatalErrorIn("metisDecomp::decompose(const pointField&)")
// << "Number of face weights " << weights.size()
// << " does not equal number of internal faces "
// << adjncy.size()/2
// << exit(FatalError);
// }
//
// // Assume symmetric weights. Keep same ordering as adjncy.
// faceWeights.setSize(adjncy.size());
//
// labelList nFacesPerCell(mesh_.nCells(), 0);
//
// for (label faceI = 0; faceI < mesh_.nInternalFaces(); faceI++)
// {
// label w = weights[faceI];
//
// label own = mesh_.faceOwner()[faceI];
// label nei = mesh_.faceNeighbour()[faceI];
//
// faceWeights[xadj[own] + nFacesPerCell[own]++] = w;
// faceWeights[xadj[nei] + nFacesPerCell[nei]++] = w;
// }
//}
}
int numCells = xadj.size()-1;
int nProcs = nProcessors_;
// output: cell -> processor addressing
finalDecomp.setSize(numCells);
// output: number of cut edges
int edgeCut = 0;
// Vertex weight info
int wgtFlag = 0;
int* vwgtPtr = NULL;
int* adjwgtPtr = NULL;
if (cellWeights.size() > 0)
{
vwgtPtr = cellWeights.begin();
wgtFlag += 2; // Weights on vertices
}
if (faceWeights.size() > 0)
{
adjwgtPtr = faceWeights.begin();
wgtFlag += 1; // Weights on edges
}
if (method == "recursive")
{
if (processorWeights.size())
{
METIS_WPartGraphRecursive
(
&numCells, // num vertices in graph
const_cast<List<int>&>(xadj).begin(), // indexing into adjncy
const_cast<List<int>&>(adjncy).begin(), // neighbour info
vwgtPtr, // vertexweights
adjwgtPtr, // no edgeweights
&wgtFlag,
&numFlag,
&nProcs,
processorWeights.begin(),
options.begin(),
&edgeCut,
finalDecomp.begin()
);
}
else
{
METIS_PartGraphRecursive
(
&numCells, // num vertices in graph
const_cast<List<int>&>(xadj).begin(), // indexing into adjncy
const_cast<List<int>&>(adjncy).begin(), // neighbour info
vwgtPtr, // vertexweights
adjwgtPtr, // no edgeweights
&wgtFlag,
&numFlag,
&nProcs,
options.begin(),
&edgeCut,
finalDecomp.begin()
);
}
}
else
{
if (processorWeights.size())
{
METIS_WPartGraphKway
(
&numCells, // num vertices in graph
const_cast<List<int>&>(xadj).begin(), // indexing into adjncy
const_cast<List<int>&>(adjncy).begin(), // neighbour info
vwgtPtr, // vertexweights
adjwgtPtr, // no edgeweights
&wgtFlag,
&numFlag,
&nProcs,
processorWeights.begin(),
options.begin(),
&edgeCut,
finalDecomp.begin()
);
}
else
{
METIS_PartGraphKway
(
&numCells, // num vertices in graph
const_cast<List<int>&>(xadj).begin(), // indexing into adjncy
const_cast<List<int>&>(adjncy).begin(), // neighbour info
vwgtPtr, // vertexweights
adjwgtPtr, // no edgeweights
&wgtFlag,
&numFlag,
&nProcs,
options.begin(),
&edgeCut,
finalDecomp.begin()
);
}
}
return edgeCut;
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::metisDecomp::metisDecomp
(
const dictionary& decompositionDict,
const polyMesh& mesh
)
:
decompositionMethod(decompositionDict),
mesh_(mesh)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::labelList Foam::metisDecomp::decompose(const pointField& points)
{
if (points.size() != mesh_.nCells())
{
FatalErrorIn("metisDecomp::decompose(const pointField&)")
<< "Can use this decomposition method only for the whole mesh"
<< endl
<< "and supply one coordinate (cellCentre) for every cell." << endl
<< "The number of coordinates " << points.size() << endl
<< "The number of cells in the mesh " << mesh_.nCells()
<< exit(FatalError);
}
// Make Metis CSR (Compressed Storage Format) storage
// adjncy : contains neighbours (= edges in graph)
// xadj(celli) : start of information in adjncy for celli
List<int> xadj(mesh_.nCells()+1);
// Initialise the number of internal faces of the cells to twice the
// number of internal faces
label nInternalFaces = 2*mesh_.nInternalFaces();
// Check the boundary for coupled patches and add to the number of
// internal faces
const polyBoundaryMesh& pbm = mesh_.boundaryMesh();
forAll(pbm, patchi)
{
if (isA<cyclicPolyPatch>(pbm[patchi]))
{
nInternalFaces += pbm[patchi].size();
}
}
// Create the adjncy array the size of the total number of internal and
// coupled faces
List<int> adjncy(nInternalFaces);
// Fill in xadj
// ~~~~~~~~~~~~
label freeAdj = 0;
for (label cellI = 0; cellI < mesh_.nCells(); cellI++)
{
xadj[cellI] = freeAdj;
const labelList& cFaces = mesh_.cells()[cellI];
forAll(cFaces, i)
{
label faceI = cFaces[i];
if
(
mesh_.isInternalFace(faceI)
|| isA<cyclicPolyPatch>(pbm[pbm.whichPatch(faceI)])
)
{
freeAdj++;
}
}
}
xadj[mesh_.nCells()] = freeAdj;
// Fill in adjncy
// ~~~~~~~~~~~~~~
labelList nFacesPerCell(mesh_.nCells(), 0);
// Internal faces
for (label faceI = 0; faceI < mesh_.nInternalFaces(); faceI++)
{
label own = mesh_.faceOwner()[faceI];
label nei = mesh_.faceNeighbour()[faceI];
adjncy[xadj[own] + nFacesPerCell[own]++] = nei;
adjncy[xadj[nei] + nFacesPerCell[nei]++] = own;
}
// Coupled faces. Only cyclics done.
forAll(pbm, patchi)
{
if (isA<cyclicPolyPatch>(pbm[patchi]))
{
const unallocLabelList& faceCells = pbm[patchi].faceCells();
label sizeby2 = faceCells.size()/2;
for (label facei=0; facei<sizeby2; facei++)
{
label own = faceCells[facei];
label nei = faceCells[facei + sizeby2];
adjncy[xadj[own] + nFacesPerCell[own]++] = nei;
adjncy[xadj[nei] + nFacesPerCell[nei]++] = own;
}
}
}
// Decompose using default weights
List<int> finalDecomp;
decompose(adjncy, xadj, finalDecomp);
// Copy back to labelList
labelList decomp(finalDecomp.size());
forAll(decomp, i)
{
decomp[i] = finalDecomp[i];
}
return decomp;
}
// From cell-cell connections to Metis format (like CompactListList)
void Foam::metisDecomp::calcMetisCSR
(
const labelListList& cellCells,
List<int>& adjncy,
List<int>& xadj
)
{
// Count number of internal faces
label nConnections = 0;
forAll(cellCells, coarseI)
{
nConnections += cellCells[coarseI].size();
}
// Create the adjncy array as twice the size of the total number of
// internal faces
adjncy.setSize(nConnections);
xadj.setSize(cellCells.size()+1);
// Fill in xadj
// ~~~~~~~~~~~~
label freeAdj = 0;
forAll(cellCells, coarseI)
{
xadj[coarseI] = freeAdj;
const labelList& cCells = cellCells[coarseI];
forAll(cCells, i)
{
adjncy[freeAdj++] = cCells[i];
}
}
xadj[cellCells.size()] = freeAdj;
}
Foam::labelList Foam::metisDecomp::decompose
(
const labelList& agglom,
const pointField& agglomPoints
)
{
if (agglom.size() != mesh_.nCells())
{
FatalErrorIn
(
"parMetisDecomp::decompose(const labelList&, const pointField&)"
) << "Size of cell-to-coarse map " << agglom.size()
<< " differs from number of cells in mesh " << mesh_.nCells()
<< exit(FatalError);
}
// Make Metis CSR (Compressed Storage Format) storage
// adjncy : contains neighbours (= edges in graph)
// xadj(celli) : start of information in adjncy for celli
List<int> adjncy;
List<int> xadj;
{
// Get cellCells on coarse mesh.
labelListList cellCells;
calcCellCells
(
mesh_,
agglom,
agglomPoints.size(),
cellCells
);
calcMetisCSR(cellCells, adjncy, xadj);
}
// Decompose using default weights
List<int> finalDecomp;
decompose(adjncy, xadj, finalDecomp);
// Rework back into decomposition for original mesh_
labelList fineDistribution(agglom.size());
forAll(fineDistribution, i)
{
fineDistribution[i] = finalDecomp[agglom[i]];
}
return fineDistribution;
}
Foam::labelList Foam::metisDecomp::decompose
(
const labelListList& globalCellCells,
const pointField& cellCentres
)
{
if (cellCentres.size() != globalCellCells.size())
{
FatalErrorIn
(
"metisDecomp::decompose(const pointField&, const labelListList&)"
) << "Inconsistent number of cells (" << globalCellCells.size()
<< ") and number of cell centres (" << cellCentres.size()
<< ")." << exit(FatalError);
}
// Make Metis CSR (Compressed Storage Format) storage
// adjncy : contains neighbours (= edges in graph)
// xadj(celli) : start of information in adjncy for celli
List<int> adjncy;
List<int> xadj;
calcMetisCSR(globalCellCells, adjncy, xadj);
// Decompose using default weights
List<int> finalDecomp;
decompose(adjncy, xadj, finalDecomp);
// Copy back to labelList
labelList decomp(finalDecomp.size());
forAll(decomp, i)
{
decomp[i] = finalDecomp[i];
}
return decomp;
}
// ************************************************************************* //