Files
openfoam/src/dynamicMesh/motionSmoother/polyMeshGeometry/polyMeshGeometry.C
2016-04-28 14:17:06 +01:00

2475 lines
59 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation | Copyright (C) 2015 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "polyMeshGeometry.H"
#include "polyMeshTetDecomposition.H"
#include "pyramidPointFaceRef.H"
#include "tetrahedron.H"
#include "syncTools.H"
#include "unitConversion.H"
#include "primitiveMeshTools.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(polyMeshGeometry, 0);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::polyMeshGeometry::updateFaceCentresAndAreas
(
const pointField& p,
const labelList& changedFaces
)
{
const faceList& fs = mesh_.faces();
forAll(changedFaces, i)
{
label facei = changedFaces[i];
const labelList& f = fs[facei];
label nPoints = f.size();
// If the face is a triangle, do a direct calculation for efficiency
// and to avoid round-off error-related problems
if (nPoints == 3)
{
faceCentres_[facei] = (1.0/3.0)*(p[f[0]] + p[f[1]] + p[f[2]]);
faceAreas_[facei] = 0.5*((p[f[1]] - p[f[0]])^(p[f[2]] - p[f[0]]));
}
else
{
vector sumN = Zero;
scalar sumA = 0.0;
vector sumAc = Zero;
point fCentre = p[f[0]];
for (label pi = 1; pi < nPoints; pi++)
{
fCentre += p[f[pi]];
}
fCentre /= nPoints;
for (label pi = 0; pi < nPoints; pi++)
{
const point& nextPoint = p[f[(pi + 1) % nPoints]];
vector c = p[f[pi]] + nextPoint + fCentre;
vector n = (nextPoint - p[f[pi]])^(fCentre - p[f[pi]]);
scalar a = mag(n);
sumN += n;
sumA += a;
sumAc += a*c;
}
faceCentres_[facei] = (1.0/3.0)*sumAc/(sumA + VSMALL);
faceAreas_[facei] = 0.5*sumN;
}
}
}
void Foam::polyMeshGeometry::updateCellCentresAndVols
(
const labelList& changedCells,
const labelList& changedFaces
)
{
const labelList& own = mesh().faceOwner();
const cellList& cells = mesh().cells();
// Clear the fields for accumulation
UIndirectList<vector>(cellCentres_, changedCells) = Zero;
UIndirectList<scalar>(cellVolumes_, changedCells) = 0.0;
// Re-calculate the changed cell centres and volumes
forAll(changedCells, changedCellI)
{
const label cellI(changedCells[changedCellI]);
const labelList& cFaces(cells[cellI]);
// Estimate the cell centre and bounding box using the face centres
vector cEst(Zero);
boundBox bb(boundBox::invertedBox);
forAll(cFaces, cFaceI)
{
const point& fc = faceCentres_[cFaces[cFaceI]];
cEst += fc;
bb.max() = max(bb.max(), fc);
bb.min() = min(bb.min(), fc);
}
cEst /= cFaces.size();
// Sum up the face-pyramid contributions
forAll(cFaces, cFaceI)
{
const label faceI(cFaces[cFaceI]);
// Calculate 3* the face-pyramid volume
scalar pyr3Vol = faceAreas_[faceI] & (faceCentres_[faceI] - cEst);
if (own[faceI] != cellI)
{
pyr3Vol = -pyr3Vol;
}
// Accumulate face-pyramid volume
cellVolumes_[cellI] += pyr3Vol;
// Calculate the face-pyramid centre
const vector pCtr = (3.0/4.0)*faceCentres_[faceI] + (1.0/4.0)*cEst;
// Accumulate volume-weighted face-pyramid centre
cellCentres_[cellI] += pyr3Vol*pCtr;
}
// Average the accumulated quantities
if (mag(cellVolumes_[cellI]) > VSMALL)
{
point cc = cellCentres_[cellI] / cellVolumes_[cellI];
// Do additional check for collapsed cells since some volumes
// (e.g. 1e-33) do not trigger above but do return completely
// wrong cell centre
if (bb.contains(cc))
{
cellCentres_[cellI] = cc;
}
else
{
cellCentres_[cellI] = cEst;
}
}
else
{
cellCentres_[cellI] = cEst;
}
cellVolumes_[cellI] *= (1.0/3.0);
}
}
Foam::labelList Foam::polyMeshGeometry::affectedCells
(
const polyMesh& mesh,
const labelList& changedFaces
)
{
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
labelHashSet affectedCells(2*changedFaces.size());
forAll(changedFaces, i)
{
label faceI = changedFaces[i];
affectedCells.insert(own[faceI]);
if (mesh.isInternalFace(faceI))
{
affectedCells.insert(nei[faceI]);
}
}
return affectedCells.toc();
}
Foam::scalar Foam::polyMeshGeometry::checkNonOrtho
(
const polyMesh& mesh,
const bool report,
const scalar severeNonorthogonalityThreshold,
const label faceI,
const vector& s, // face area vector
const vector& d, // cc-cc vector
label& severeNonOrth,
label& errorNonOrth,
labelHashSet* setPtr
)
{
scalar dDotS = (d & s)/(mag(d)*mag(s) + VSMALL);
if (dDotS < severeNonorthogonalityThreshold)
{
label nei = -1;
if (mesh.isInternalFace(faceI))
{
nei = mesh.faceNeighbour()[faceI];
}
if (dDotS > SMALL)
{
if (report)
{
// Severe non-orthogonality but mesh still OK
Pout<< "Severe non-orthogonality for face " << faceI
<< " between cells " << mesh.faceOwner()[faceI]
<< " and " << nei
<< ": Angle = "
<< radToDeg(::acos(dDotS))
<< " deg." << endl;
}
severeNonOrth++;
}
else
{
// Non-orthogonality greater than 90 deg
if (report)
{
WarningInFunction
<< "Severe non-orthogonality detected for face "
<< faceI
<< " between cells " << mesh.faceOwner()[faceI]
<< " and " << nei
<< ": Angle = "
<< radToDeg(::acos(dDotS))
<< " deg." << endl;
}
errorNonOrth++;
}
if (setPtr)
{
setPtr->insert(faceI);
}
}
return dDotS;
}
// Create the neighbour pyramid - it will have positive volume
bool Foam::polyMeshGeometry::checkFaceTet
(
const polyMesh& mesh,
const bool report,
const scalar minTetQuality,
const pointField& p,
const label faceI,
const point& fc, // face centre
const point& cc, // cell centre
labelHashSet* setPtr
)
{
const face& f = mesh.faces()[faceI];
forAll(f, fp)
{
scalar tetQual = tetPointRef
(
p[f[fp]],
p[f.nextLabel(fp)],
fc,
cc
).quality();
if (tetQual < minTetQuality)
{
if (report)
{
Pout<< "bool polyMeshGeometry::checkFaceTets("
<< "const bool, const scalar, const pointField&"
<< ", const pointField&"
<< ", const labelList&, labelHashSet*) : "
<< "face " << faceI
<< " has a triangle that points the wrong way."
<< endl
<< "Tet quality: " << tetQual
<< " Face " << faceI
<< endl;
}
if (setPtr)
{
setPtr->insert(faceI);
}
return true;
}
}
return false;
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
// Construct from components
Foam::polyMeshGeometry::polyMeshGeometry(const polyMesh& mesh)
:
mesh_(mesh)
{
correct();
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::polyMeshGeometry::correct()
{
faceAreas_ = mesh_.faceAreas();
faceCentres_ = mesh_.faceCentres();
cellCentres_ = mesh_.cellCentres();
cellVolumes_ = mesh_.cellVolumes();
}
void Foam::polyMeshGeometry::correct
(
const pointField& p,
const labelList& changedFaces
)
{
// Update face quantities
updateFaceCentresAndAreas(p, changedFaces);
// Update cell quantities from face quantities
updateCellCentresAndVols(affectedCells(mesh_, changedFaces), changedFaces);
}
bool Foam::polyMeshGeometry::checkFaceDotProduct
(
const bool report,
const scalar orthWarn,
const polyMesh& mesh,
const vectorField& cellCentres,
const vectorField& faceAreas,
const labelList& checkFaces,
const List<labelPair>& baffles,
labelHashSet* setPtr
)
{
// for all internal and coupled faces check theat the d dot S product
// is positive
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Severe nonorthogonality threshold
const scalar severeNonorthogonalityThreshold = ::cos(degToRad(orthWarn));
// Calculate coupled cell centre
pointField neiCc(mesh.nFaces() - mesh.nInternalFaces());
for (label faceI = mesh.nInternalFaces(); faceI < mesh.nFaces(); faceI++)
{
neiCc[faceI-mesh.nInternalFaces()] = cellCentres[own[faceI]];
}
syncTools::swapBoundaryFacePositions(mesh, neiCc);
scalar minDDotS = GREAT;
scalar sumDDotS = 0;
label nDDotS = 0;
label severeNonOrth = 0;
label errorNonOrth = 0;
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
const point& ownCc = cellCentres[own[faceI]];
if (mesh.isInternalFace(faceI))
{
scalar dDotS = checkNonOrtho
(
mesh,
report,
severeNonorthogonalityThreshold,
faceI,
faceAreas[faceI],
cellCentres[nei[faceI]] - ownCc,
severeNonOrth,
errorNonOrth,
setPtr
);
if (dDotS < minDDotS)
{
minDDotS = dDotS;
}
sumDDotS += dDotS;
nDDotS++;
}
else
{
label patchI = patches.whichPatch(faceI);
if (patches[patchI].coupled())
{
scalar dDotS = checkNonOrtho
(
mesh,
report,
severeNonorthogonalityThreshold,
faceI,
faceAreas[faceI],
neiCc[faceI-mesh.nInternalFaces()] - ownCc,
severeNonOrth,
errorNonOrth,
setPtr
);
if (dDotS < minDDotS)
{
minDDotS = dDotS;
}
sumDDotS += dDotS;
nDDotS++;
}
}
}
forAll(baffles, i)
{
label face0 = baffles[i].first();
label face1 = baffles[i].second();
const point& ownCc = cellCentres[own[face0]];
scalar dDotS = checkNonOrtho
(
mesh,
report,
severeNonorthogonalityThreshold,
face0,
faceAreas[face0],
cellCentres[own[face1]] - ownCc,
severeNonOrth,
errorNonOrth,
setPtr
);
if (dDotS < minDDotS)
{
minDDotS = dDotS;
}
sumDDotS += dDotS;
nDDotS++;
}
reduce(minDDotS, minOp<scalar>());
reduce(sumDDotS, sumOp<scalar>());
reduce(nDDotS, sumOp<label>());
reduce(severeNonOrth, sumOp<label>());
reduce(errorNonOrth, sumOp<label>());
// Only report if there are some internal faces
if (nDDotS > 0)
{
if (report && minDDotS < severeNonorthogonalityThreshold)
{
Info<< "Number of non-orthogonality errors: " << errorNonOrth
<< ". Number of severely non-orthogonal faces: "
<< severeNonOrth << "." << endl;
}
}
if (report)
{
if (nDDotS > 0)
{
Info<< "Mesh non-orthogonality Max: "
<< radToDeg(::acos(minDDotS))
<< " average: " << radToDeg(::acos(sumDDotS/nDDotS))
<< endl;
}
}
if (errorNonOrth > 0)
{
if (report)
{
SeriousErrorInFunction
<< "Error in non-orthogonality detected" << endl;
}
return true;
}
else
{
if (report)
{
Info<< "Non-orthogonality check OK.\n" << endl;
}
return false;
}
}
bool Foam::polyMeshGeometry::checkFacePyramids
(
const bool report,
const scalar minPyrVol,
const polyMesh& mesh,
const vectorField& cellCentres,
const pointField& p,
const labelList& checkFaces,
const List<labelPair>& baffles,
labelHashSet* setPtr
)
{
// check whether face area vector points to the cell with higher label
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const faceList& f = mesh.faces();
label nErrorPyrs = 0;
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
// Create the owner pyramid - it will have negative volume
scalar pyrVol = pyramidPointFaceRef
(
f[faceI],
cellCentres[own[faceI]]
).mag(p);
if (pyrVol > -minPyrVol)
{
if (report)
{
Pout<< "bool polyMeshGeometry::checkFacePyramids("
<< "const bool, const scalar, const pointField&"
<< ", const labelList&, labelHashSet*): "
<< "face " << faceI << " points the wrong way. " << endl
<< "Pyramid volume: " << -pyrVol
<< " Face " << f[faceI] << " area: " << f[faceI].mag(p)
<< " Owner cell: " << own[faceI] << endl
<< "Owner cell vertex labels: "
<< mesh.cells()[own[faceI]].labels(f)
<< endl;
}
if (setPtr)
{
setPtr->insert(faceI);
}
nErrorPyrs++;
}
if (mesh.isInternalFace(faceI))
{
// Create the neighbour pyramid - it will have positive volume
scalar pyrVol =
pyramidPointFaceRef(f[faceI], cellCentres[nei[faceI]]).mag(p);
if (pyrVol < minPyrVol)
{
if (report)
{
Pout<< "bool polyMeshGeometry::checkFacePyramids("
<< "const bool, const scalar, const pointField&"
<< ", const labelList&, labelHashSet*): "
<< "face " << faceI << " points the wrong way. " << endl
<< "Pyramid volume: " << -pyrVol
<< " Face " << f[faceI] << " area: " << f[faceI].mag(p)
<< " Neighbour cell: " << nei[faceI] << endl
<< "Neighbour cell vertex labels: "
<< mesh.cells()[nei[faceI]].labels(f)
<< endl;
}
if (setPtr)
{
setPtr->insert(faceI);
}
nErrorPyrs++;
}
}
}
forAll(baffles, i)
{
label face0 = baffles[i].first();
label face1 = baffles[i].second();
const point& ownCc = cellCentres[own[face0]];
// Create the owner pyramid - it will have negative volume
scalar pyrVolOwn = pyramidPointFaceRef
(
f[face0],
ownCc
).mag(p);
if (pyrVolOwn > -minPyrVol)
{
if (report)
{
Pout<< "bool polyMeshGeometry::checkFacePyramids("
<< "const bool, const scalar, const pointField&"
<< ", const labelList&, labelHashSet*): "
<< "face " << face0 << " points the wrong way. " << endl
<< "Pyramid volume: " << -pyrVolOwn
<< " Face " << f[face0] << " area: " << f[face0].mag(p)
<< " Owner cell: " << own[face0] << endl
<< "Owner cell vertex labels: "
<< mesh.cells()[own[face0]].labels(f)
<< endl;
}
if (setPtr)
{
setPtr->insert(face0);
}
nErrorPyrs++;
}
// Create the neighbour pyramid - it will have positive volume
scalar pyrVolNbr =
pyramidPointFaceRef(f[face0], cellCentres[own[face1]]).mag(p);
if (pyrVolNbr < minPyrVol)
{
if (report)
{
Pout<< "bool polyMeshGeometry::checkFacePyramids("
<< "const bool, const scalar, const pointField&"
<< ", const labelList&, labelHashSet*): "
<< "face " << face0 << " points the wrong way. " << endl
<< "Pyramid volume: " << -pyrVolNbr
<< " Face " << f[face0] << " area: " << f[face0].mag(p)
<< " Neighbour cell: " << own[face1] << endl
<< "Neighbour cell vertex labels: "
<< mesh.cells()[own[face1]].labels(f)
<< endl;
}
if (setPtr)
{
setPtr->insert(face0);
}
nErrorPyrs++;
}
}
reduce(nErrorPyrs, sumOp<label>());
if (nErrorPyrs > 0)
{
if (report)
{
SeriousErrorInFunction
<< "Error in face pyramids: faces pointing the wrong way."
<< endl;
}
return true;
}
else
{
if (report)
{
Info<< "Face pyramids OK.\n" << endl;
}
return false;
}
}
bool Foam::polyMeshGeometry::checkFaceTets
(
const bool report,
const scalar minTetQuality,
const polyMesh& mesh,
const vectorField& cellCentres,
const vectorField& faceCentres,
const pointField& p,
const labelList& checkFaces,
const List<labelPair>& baffles,
labelHashSet* setPtr
)
{
// check whether decomposing each cell into tets results in
// positive volume, non-flat tets
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Calculate coupled cell centre
pointField neiCc(mesh.nFaces() - mesh.nInternalFaces());
for (label faceI = mesh.nInternalFaces(); faceI < mesh.nFaces(); faceI++)
{
neiCc[faceI - mesh.nInternalFaces()] = cellCentres[own[faceI]];
}
syncTools::swapBoundaryFacePositions(mesh, neiCc);
label nErrorTets = 0;
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
// Create the owner pyramid - note: exchange cell and face centre
// to get positive volume.
bool tetError = checkFaceTet
(
mesh,
report,
minTetQuality,
p,
faceI,
cellCentres[own[faceI]], // face centre
faceCentres[faceI], // cell centre
setPtr
);
if (tetError)
{
nErrorTets++;
}
if (mesh.isInternalFace(faceI))
{
// Create the neighbour tets - they will have positive volume
bool tetError = checkFaceTet
(
mesh,
report,
minTetQuality,
p,
faceI,
faceCentres[faceI], // face centre
cellCentres[nei[faceI]], // cell centre
setPtr
);
if (tetError)
{
nErrorTets++;
}
if
(
polyMeshTetDecomposition::findSharedBasePoint
(
mesh,
faceI,
minTetQuality,
report
) == -1
)
{
if (setPtr)
{
setPtr->insert(faceI);
}
nErrorTets++;
}
}
else
{
label patchI = patches.whichPatch(faceI);
if (patches[patchI].coupled())
{
if
(
polyMeshTetDecomposition::findSharedBasePoint
(
mesh,
faceI,
neiCc[faceI - mesh.nInternalFaces()],
minTetQuality,
report
) == -1
)
{
if (setPtr)
{
setPtr->insert(faceI);
}
nErrorTets++;
}
}
else
{
if
(
polyMeshTetDecomposition::findBasePoint
(
mesh,
faceI,
minTetQuality,
report
) == -1
)
{
if (setPtr)
{
setPtr->insert(faceI);
}
nErrorTets++;
}
}
}
}
forAll(baffles, i)
{
label face0 = baffles[i].first();
label face1 = baffles[i].second();
bool tetError = checkFaceTet
(
mesh,
report,
minTetQuality,
p,
face0,
cellCentres[own[face0]], // face centre
faceCentres[face0], // cell centre
setPtr
);
if (tetError)
{
nErrorTets++;
}
// Create the neighbour tets - they will have positive volume
tetError = checkFaceTet
(
mesh,
report,
minTetQuality,
p,
face0,
faceCentres[face0], // face centre
cellCentres[own[face1]], // cell centre
setPtr
);
if (tetError)
{
nErrorTets++;
}
if
(
polyMeshTetDecomposition::findSharedBasePoint
(
mesh,
face0,
cellCentres[own[face1]],
minTetQuality,
report
) == -1
)
{
if (setPtr)
{
setPtr->insert(face0);
}
nErrorTets++;
}
}
reduce(nErrorTets, sumOp<label>());
if (nErrorTets > 0)
{
if (report)
{
SeriousErrorInFunction
<< "Error in face decomposition: negative tets."
<< endl;
}
return true;
}
else
{
if (report)
{
Info<< "Face tets OK.\n" << endl;
}
return false;
}
}
bool Foam::polyMeshGeometry::checkFaceSkewness
(
const bool report,
const scalar internalSkew,
const scalar boundarySkew,
const polyMesh& mesh,
const pointField& points,
const vectorField& cellCentres,
const vectorField& faceCentres,
const vectorField& faceAreas,
const labelList& checkFaces,
const List<labelPair>& baffles,
labelHashSet* setPtr
)
{
// Warn if the skew correction vector is more than skew times
// larger than the face area vector
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Calculate coupled cell centre
pointField neiCc;
syncTools::swapBoundaryCellPositions(mesh, cellCentres, neiCc);
scalar maxSkew = 0;
label nWarnSkew = 0;
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
if (mesh.isInternalFace(faceI))
{
scalar skewness = primitiveMeshTools::faceSkewness
(
mesh,
points,
faceCentres,
faceAreas,
faceI,
cellCentres[own[faceI]],
cellCentres[nei[faceI]]
);
// Check if the skewness vector is greater than the PN vector.
// This does not cause trouble but is a good indication of a poor
// mesh.
if (skewness > internalSkew)
{
if (report)
{
Pout<< "Severe skewness for face " << faceI
<< " skewness = " << skewness << endl;
}
if (setPtr)
{
setPtr->insert(faceI);
}
nWarnSkew++;
}
maxSkew = max(maxSkew, skewness);
}
else if (patches[patches.whichPatch(faceI)].coupled())
{
scalar skewness = primitiveMeshTools::faceSkewness
(
mesh,
points,
faceCentres,
faceAreas,
faceI,
cellCentres[own[faceI]],
neiCc[faceI-mesh.nInternalFaces()]
);
// Check if the skewness vector is greater than the PN vector.
// This does not cause trouble but is a good indication of a poor
// mesh.
if (skewness > internalSkew)
{
if (report)
{
Pout<< "Severe skewness for coupled face " << faceI
<< " skewness = " << skewness << endl;
}
if (setPtr)
{
setPtr->insert(faceI);
}
nWarnSkew++;
}
maxSkew = max(maxSkew, skewness);
}
else
{
scalar skewness = primitiveMeshTools::boundaryFaceSkewness
(
mesh,
points,
faceCentres,
faceAreas,
faceI,
cellCentres[own[faceI]]
);
// Check if the skewness vector is greater than the PN vector.
// This does not cause trouble but is a good indication of a poor
// mesh.
if (skewness > boundarySkew)
{
if (report)
{
Pout<< "Severe skewness for boundary face " << faceI
<< " skewness = " << skewness << endl;
}
if (setPtr)
{
setPtr->insert(faceI);
}
nWarnSkew++;
}
maxSkew = max(maxSkew, skewness);
}
}
forAll(baffles, i)
{
label face0 = baffles[i].first();
label face1 = baffles[i].second();
const point& ownCc = cellCentres[own[face0]];
const point& neiCc = cellCentres[own[face1]];
scalar skewness = primitiveMeshTools::faceSkewness
(
mesh,
points,
faceCentres,
faceAreas,
face0,
ownCc,
neiCc
);
// Check if the skewness vector is greater than the PN vector.
// This does not cause trouble but is a good indication of a poor
// mesh.
if (skewness > internalSkew)
{
if (report)
{
Pout<< "Severe skewness for face " << face0
<< " skewness = " << skewness << endl;
}
if (setPtr)
{
setPtr->insert(face0);
}
nWarnSkew++;
}
maxSkew = max(maxSkew, skewness);
}
reduce(maxSkew, maxOp<scalar>());
reduce(nWarnSkew, sumOp<label>());
if (nWarnSkew > 0)
{
if (report)
{
WarningInFunction
<< 100*maxSkew
<< " percent.\nThis may impair the quality of the result." << nl
<< nWarnSkew << " highly skew faces detected."
<< endl;
}
return true;
}
else
{
if (report)
{
Info<< "Max skewness = " << 100*maxSkew
<< " percent. Face skewness OK.\n" << endl;
}
return false;
}
}
bool Foam::polyMeshGeometry::checkFaceWeights
(
const bool report,
const scalar warnWeight,
const polyMesh& mesh,
const vectorField& cellCentres,
const vectorField& faceCentres,
const vectorField& faceAreas,
const labelList& checkFaces,
const List<labelPair>& baffles,
labelHashSet* setPtr
)
{
// Warn if the delta factor (0..1) is too large.
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Calculate coupled cell centre
pointField neiCc(mesh.nFaces()-mesh.nInternalFaces());
for (label faceI = mesh.nInternalFaces(); faceI < mesh.nFaces(); faceI++)
{
neiCc[faceI-mesh.nInternalFaces()] = cellCentres[own[faceI]];
}
syncTools::swapBoundaryFacePositions(mesh, neiCc);
scalar minWeight = GREAT;
label nWarnWeight = 0;
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
const point& fc = faceCentres[faceI];
const vector& fa = faceAreas[faceI];
scalar dOwn = mag(fa & (fc-cellCentres[own[faceI]]));
if (mesh.isInternalFace(faceI))
{
scalar dNei = mag(fa & (cellCentres[nei[faceI]]-fc));
scalar weight = min(dNei,dOwn)/(dNei+dOwn+VSMALL);
if (weight < warnWeight)
{
if (report)
{
Pout<< "Small weighting factor for face " << faceI
<< " weight = " << weight << endl;
}
if (setPtr)
{
setPtr->insert(faceI);
}
nWarnWeight++;
}
minWeight = min(minWeight, weight);
}
else
{
label patchI = patches.whichPatch(faceI);
if (patches[patchI].coupled())
{
scalar dNei = mag(fa & (neiCc[faceI-mesh.nInternalFaces()]-fc));
scalar weight = min(dNei,dOwn)/(dNei+dOwn+VSMALL);
if (weight < warnWeight)
{
if (report)
{
Pout<< "Small weighting factor for face " << faceI
<< " weight = " << weight << endl;
}
if (setPtr)
{
setPtr->insert(faceI);
}
nWarnWeight++;
}
minWeight = min(minWeight, weight);
}
}
}
forAll(baffles, i)
{
label face0 = baffles[i].first();
label face1 = baffles[i].second();
const point& ownCc = cellCentres[own[face0]];
const point& fc = faceCentres[face0];
const vector& fa = faceAreas[face0];
scalar dOwn = mag(fa & (fc-ownCc));
scalar dNei = mag(fa & (cellCentres[own[face1]]-fc));
scalar weight = min(dNei,dOwn)/(dNei+dOwn+VSMALL);
if (weight < warnWeight)
{
if (report)
{
Pout<< "Small weighting factor for face " << face0
<< " weight = " << weight << endl;
}
if (setPtr)
{
setPtr->insert(face0);
}
nWarnWeight++;
}
minWeight = min(minWeight, weight);
}
reduce(minWeight, minOp<scalar>());
reduce(nWarnWeight, sumOp<label>());
if (minWeight < warnWeight)
{
if (report)
{
WarningInFunction
<< minWeight << '.' << nl
<< nWarnWeight << " faces with small weights detected."
<< endl;
}
return true;
}
else
{
if (report)
{
Info<< "Min weight = " << minWeight
<< ". Weights OK.\n" << endl;
}
return false;
}
}
bool Foam::polyMeshGeometry::checkVolRatio
(
const bool report,
const scalar warnRatio,
const polyMesh& mesh,
const scalarField& cellVolumes,
const labelList& checkFaces,
const List<labelPair>& baffles,
labelHashSet* setPtr
)
{
// Warn if the volume ratio between neighbouring cells is too large
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Calculate coupled cell vol
scalarField neiVols(mesh.nFaces()-mesh.nInternalFaces());
for (label faceI = mesh.nInternalFaces(); faceI < mesh.nFaces(); faceI++)
{
neiVols[faceI-mesh.nInternalFaces()] = cellVolumes[own[faceI]];
}
syncTools::swapBoundaryFaceList(mesh, neiVols);
scalar minRatio = GREAT;
label nWarnRatio = 0;
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
scalar ownVol = mag(cellVolumes[own[faceI]]);
scalar neiVol = -GREAT;
if (mesh.isInternalFace(faceI))
{
neiVol = mag(cellVolumes[nei[faceI]]);
}
else
{
label patchI = patches.whichPatch(faceI);
if (patches[patchI].coupled())
{
neiVol = mag(neiVols[faceI-mesh.nInternalFaces()]);
}
}
if (neiVol >= 0)
{
scalar ratio = min(ownVol, neiVol) / (max(ownVol, neiVol) + VSMALL);
if (ratio < warnRatio)
{
if (report)
{
Pout<< "Small ratio for face " << faceI
<< " ratio = " << ratio << endl;
}
if (setPtr)
{
setPtr->insert(faceI);
}
nWarnRatio++;
}
minRatio = min(minRatio, ratio);
}
}
forAll(baffles, i)
{
label face0 = baffles[i].first();
label face1 = baffles[i].second();
scalar ownVol = mag(cellVolumes[own[face0]]);
scalar neiVol = mag(cellVolumes[own[face1]]);
if (neiVol >= 0)
{
scalar ratio = min(ownVol, neiVol) / (max(ownVol, neiVol) + VSMALL);
if (ratio < warnRatio)
{
if (report)
{
Pout<< "Small ratio for face " << face0
<< " ratio = " << ratio << endl;
}
if (setPtr)
{
setPtr->insert(face0);
}
nWarnRatio++;
}
minRatio = min(minRatio, ratio);
}
}
reduce(minRatio, minOp<scalar>());
reduce(nWarnRatio, sumOp<label>());
if (minRatio < warnRatio)
{
if (report)
{
WarningInFunction
<< minRatio << '.' << nl
<< nWarnRatio << " faces with small ratios detected."
<< endl;
}
return true;
}
else
{
if (report)
{
Info<< "Min ratio = " << minRatio
<< ". Ratios OK.\n" << endl;
}
return false;
}
}
// Check convexity of angles in a face. Allow a slight non-convexity.
// E.g. maxDeg = 10 allows for angles < 190 (or 10 degrees concavity)
// (if truly concave and points not visible from face centre the face-pyramid
// check in checkMesh will fail)
bool Foam::polyMeshGeometry::checkFaceAngles
(
const bool report,
const scalar maxDeg,
const polyMesh& mesh,
const vectorField& faceAreas,
const pointField& p,
const labelList& checkFaces,
labelHashSet* setPtr
)
{
if (maxDeg < -SMALL || maxDeg > 180+SMALL)
{
FatalErrorInFunction
<< "maxDeg should be [0..180] but is now " << maxDeg
<< abort(FatalError);
}
const scalar maxSin = Foam::sin(degToRad(maxDeg));
const faceList& fcs = mesh.faces();
scalar maxEdgeSin = 0.0;
label nConcave = 0;
label errorFaceI = -1;
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
const face& f = fcs[faceI];
vector faceNormal = faceAreas[faceI];
faceNormal /= mag(faceNormal) + VSMALL;
// Get edge from f[0] to f[size-1];
vector ePrev(p[f.first()] - p[f.last()]);
scalar magEPrev = mag(ePrev);
ePrev /= magEPrev + VSMALL;
forAll(f, fp0)
{
// Get vertex after fp
label fp1 = f.fcIndex(fp0);
// Normalized vector between two consecutive points
vector e10(p[f[fp1]] - p[f[fp0]]);
scalar magE10 = mag(e10);
e10 /= magE10 + VSMALL;
if (magEPrev > SMALL && magE10 > SMALL)
{
vector edgeNormal = ePrev ^ e10;
scalar magEdgeNormal = mag(edgeNormal);
if (magEdgeNormal < maxSin)
{
// Edges (almost) aligned -> face is ok.
}
else
{
// Check normal
edgeNormal /= magEdgeNormal;
if ((edgeNormal & faceNormal) < SMALL)
{
if (faceI != errorFaceI)
{
// Count only one error per face.
errorFaceI = faceI;
nConcave++;
}
if (setPtr)
{
setPtr->insert(faceI);
}
maxEdgeSin = max(maxEdgeSin, magEdgeNormal);
}
}
}
ePrev = e10;
magEPrev = magE10;
}
}
reduce(nConcave, sumOp<label>());
reduce(maxEdgeSin, maxOp<scalar>());
if (report)
{
if (maxEdgeSin > SMALL)
{
scalar maxConcaveDegr =
radToDeg(Foam::asin(Foam::min(1.0, maxEdgeSin)));
Info<< "There are " << nConcave
<< " faces with concave angles between consecutive"
<< " edges. Max concave angle = " << maxConcaveDegr
<< " degrees.\n" << endl;
}
else
{
Info<< "All angles in faces are convex or less than " << maxDeg
<< " degrees concave.\n" << endl;
}
}
if (nConcave > 0)
{
if (report)
{
WarningInFunction
<< nConcave << " face points with severe concave angle (> "
<< maxDeg << " deg) found.\n"
<< endl;
}
return true;
}
else
{
return false;
}
}
// Check twist of faces. Is calculated as the difference between normals of
// individual triangles and the cell-cell centre edge.
bool Foam::polyMeshGeometry::checkFaceTwist
(
const bool report,
const scalar minTwist,
const polyMesh& mesh,
const vectorField& cellCentres,
const vectorField& faceAreas,
const vectorField& faceCentres,
const pointField& p,
const labelList& checkFaces,
labelHashSet* setPtr
)
{
if (minTwist < -1-SMALL || minTwist > 1+SMALL)
{
FatalErrorInFunction
<< "minTwist should be [-1..1] but is now " << minTwist
<< abort(FatalError);
}
const faceList& fcs = mesh.faces();
label nWarped = 0;
// forAll(checkFaces, i)
// {
// label faceI = checkFaces[i];
//
// const face& f = fcs[faceI];
//
// scalar magArea = mag(faceAreas[faceI]);
//
// if (f.size() > 3 && magArea > VSMALL)
// {
// const vector nf = faceAreas[faceI] / magArea;
//
// const point& fc = faceCentres[faceI];
//
// forAll(f, fpI)
// {
// vector triArea
// (
// triPointRef
// (
// p[f[fpI]],
// p[f.nextLabel(fpI)],
// fc
// ).normal()
// );
//
// scalar magTri = mag(triArea);
//
// if (magTri > VSMALL && ((nf & triArea/magTri) < minTwist))
// {
// nWarped++;
//
// if (setPtr)
// {
// setPtr->insert(faceI);
// }
//
// break;
// }
// }
// }
// }
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Calculate coupled cell centre
pointField neiCc(mesh.nFaces()-mesh.nInternalFaces());
for (label faceI = mesh.nInternalFaces(); faceI < mesh.nFaces(); faceI++)
{
neiCc[faceI-mesh.nInternalFaces()] = cellCentres[own[faceI]];
}
syncTools::swapBoundaryFacePositions(mesh, neiCc);
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
const face& f = fcs[faceI];
if (f.size() > 3)
{
vector nf(Zero);
if (mesh.isInternalFace(faceI))
{
nf = cellCentres[nei[faceI]] - cellCentres[own[faceI]];
nf /= mag(nf) + VSMALL;
}
else if (patches[patches.whichPatch(faceI)].coupled())
{
nf =
neiCc[faceI-mesh.nInternalFaces()]
- cellCentres[own[faceI]];
nf /= mag(nf) + VSMALL;
}
else
{
nf = faceCentres[faceI] - cellCentres[own[faceI]];
nf /= mag(nf) + VSMALL;
}
if (nf != vector::zero)
{
const point& fc = faceCentres[faceI];
forAll(f, fpI)
{
vector triArea
(
triPointRef
(
p[f[fpI]],
p[f.nextLabel(fpI)],
fc
).normal()
);
scalar magTri = mag(triArea);
if (magTri > VSMALL && ((nf & triArea/magTri) < minTwist))
{
nWarped++;
if (setPtr)
{
setPtr->insert(faceI);
}
break;
}
}
}
}
}
reduce(nWarped, sumOp<label>());
if (report)
{
if (nWarped> 0)
{
Info<< "There are " << nWarped
<< " faces with cosine of the angle"
<< " between triangle normal and face normal less than "
<< minTwist << nl << endl;
}
else
{
Info<< "All faces are flat in that the cosine of the angle"
<< " between triangle normal and face normal less than "
<< minTwist << nl << endl;
}
}
if (nWarped > 0)
{
if (report)
{
WarningInFunction
<< nWarped << " faces with severe warpage "
<< "(cosine of the angle between triangle normal and "
<< "face normal < " << minTwist << ") found.\n"
<< endl;
}
return true;
}
else
{
return false;
}
}
// Like checkFaceTwist but compares normals of consecutive triangles.
bool Foam::polyMeshGeometry::checkTriangleTwist
(
const bool report,
const scalar minTwist,
const polyMesh& mesh,
const vectorField& faceAreas,
const vectorField& faceCentres,
const pointField& p,
const labelList& checkFaces,
labelHashSet* setPtr
)
{
if (minTwist < -1-SMALL || minTwist > 1+SMALL)
{
FatalErrorInFunction
<< "minTwist should be [-1..1] but is now " << minTwist
<< abort(FatalError);
}
const faceList& fcs = mesh.faces();
label nWarped = 0;
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
const face& f = fcs[faceI];
if (f.size() > 3)
{
const point& fc = faceCentres[faceI];
// Find starting triangle (at startFp) with non-zero area
label startFp = -1;
vector prevN;
forAll(f, fp)
{
prevN = triPointRef
(
p[f[fp]],
p[f.nextLabel(fp)],
fc
).normal();
scalar magTri = mag(prevN);
if (magTri > VSMALL)
{
startFp = fp;
prevN /= magTri;
break;
}
}
if (startFp != -1)
{
label fp = startFp;
do
{
fp = f.fcIndex(fp);
vector triN
(
triPointRef
(
p[f[fp]],
p[f.nextLabel(fp)],
fc
).normal()
);
scalar magTri = mag(triN);
if (magTri > VSMALL)
{
triN /= magTri;
if ((prevN & triN) < minTwist)
{
nWarped++;
if (setPtr)
{
setPtr->insert(faceI);
}
break;
}
prevN = triN;
}
else if (minTwist > 0)
{
nWarped++;
if (setPtr)
{
setPtr->insert(faceI);
}
break;
}
}
while (fp != startFp);
}
}
}
reduce(nWarped, sumOp<label>());
if (report)
{
if (nWarped> 0)
{
Info<< "There are " << nWarped
<< " faces with cosine of the angle"
<< " between consecutive triangle normals less than "
<< minTwist << nl << endl;
}
else
{
Info<< "All faces are flat in that the cosine of the angle"
<< " between consecutive triangle normals is less than "
<< minTwist << nl << endl;
}
}
if (nWarped > 0)
{
if (report)
{
WarningInFunction
<< nWarped << " faces with severe warpage "
<< "(cosine of the angle between consecutive triangle normals"
<< " < " << minTwist << ") found.\n"
<< endl;
}
return true;
}
else
{
return false;
}
}
bool Foam::polyMeshGeometry::checkFaceFlatness
(
const bool report,
const scalar minFlatness,
const polyMesh& mesh,
const vectorField& faceAreas,
const vectorField& faceCentres,
const pointField& p,
const labelList& checkFaces,
labelHashSet* setPtr
)
{
if (minFlatness < -SMALL || minFlatness > 1+SMALL)
{
FatalErrorInFunction
<< "minFlatness should be [0..1] but is now " << minFlatness
<< abort(FatalError);
}
const faceList& fcs = mesh.faces();
label nWarped = 0;
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
const face& f = fcs[faceI];
if (f.size() > 3)
{
const point& fc = faceCentres[faceI];
// Sum triangle areas
scalar sumArea = 0.0;
forAll(f, fp)
{
sumArea += triPointRef
(
p[f[fp]],
p[f.nextLabel(fp)],
fc
).mag();
}
if (sumArea/mag(faceAreas[faceI]) < minFlatness)
{
nWarped++;
if (setPtr)
{
setPtr->insert(faceI);
}
}
}
}
reduce(nWarped, sumOp<label>());
if (report)
{
if (nWarped> 0)
{
Info<< "There are " << nWarped
<< " faces with area of invidual triangles"
<< " compared to overall area less than "
<< minFlatness << nl << endl;
}
else
{
Info<< "All faces are flat in that the area of invidual triangles"
<< " compared to overall area is less than "
<< minFlatness << nl << endl;
}
}
if (nWarped > 0)
{
if (report)
{
WarningInFunction
<< nWarped << " non-flat faces "
<< "(area of invidual triangles"
<< " compared to overall area"
<< " < " << minFlatness << ") found.\n"
<< endl;
}
return true;
}
else
{
return false;
}
}
bool Foam::polyMeshGeometry::checkFaceArea
(
const bool report,
const scalar minArea,
const polyMesh& mesh,
const vectorField& faceAreas,
const labelList& checkFaces,
labelHashSet* setPtr
)
{
label nZeroArea = 0;
forAll(checkFaces, i)
{
label faceI = checkFaces[i];
if (mag(faceAreas[faceI]) < minArea)
{
if (setPtr)
{
setPtr->insert(faceI);
}
nZeroArea++;
}
}
reduce(nZeroArea, sumOp<label>());
if (report)
{
if (nZeroArea > 0)
{
Info<< "There are " << nZeroArea
<< " faces with area < " << minArea << '.' << nl << endl;
}
else
{
Info<< "All faces have area > " << minArea << '.' << nl << endl;
}
}
if (nZeroArea > 0)
{
if (report)
{
WarningInFunction
<< nZeroArea << " faces with area < " << minArea
<< " found.\n"
<< endl;
}
return true;
}
else
{
return false;
}
}
bool Foam::polyMeshGeometry::checkCellDeterminant
(
const bool report,
const scalar warnDet,
const polyMesh& mesh,
const vectorField& faceAreas,
const labelList& checkFaces,
const labelList& affectedCells,
labelHashSet* setPtr
)
{
const cellList& cells = mesh.cells();
scalar minDet = GREAT;
scalar sumDet = 0.0;
label nSumDet = 0;
label nWarnDet = 0;
forAll(affectedCells, i)
{
const cell& cFaces = cells[affectedCells[i]];
tensor areaSum(Zero);
scalar magAreaSum = 0;
forAll(cFaces, cFaceI)
{
label faceI = cFaces[cFaceI];
scalar magArea = mag(faceAreas[faceI]);
magAreaSum += magArea;
areaSum += faceAreas[faceI]*(faceAreas[faceI]/(magArea+VSMALL));
}
scalar scaledDet = det(areaSum/(magAreaSum+VSMALL))/0.037037037037037;
minDet = min(minDet, scaledDet);
sumDet += scaledDet;
nSumDet++;
if (scaledDet < warnDet)
{
if (setPtr)
{
// Insert all faces of the cell.
forAll(cFaces, cFaceI)
{
label faceI = cFaces[cFaceI];
setPtr->insert(faceI);
}
}
nWarnDet++;
}
}
reduce(minDet, minOp<scalar>());
reduce(sumDet, sumOp<scalar>());
reduce(nSumDet, sumOp<label>());
reduce(nWarnDet, sumOp<label>());
if (report)
{
if (nSumDet > 0)
{
Info<< "Cell determinant (1 = uniform cube) : average = "
<< sumDet / nSumDet << " min = " << minDet << endl;
}
if (nWarnDet > 0)
{
Info<< "There are " << nWarnDet
<< " cells with determinant < " << warnDet << '.' << nl
<< endl;
}
else
{
Info<< "All faces have determinant > " << warnDet << '.' << nl
<< endl;
}
}
if (nWarnDet > 0)
{
if (report)
{
WarningInFunction
<< nWarnDet << " cells with determinant < " << warnDet
<< " found.\n"
<< endl;
}
return true;
}
else
{
return false;
}
}
bool Foam::polyMeshGeometry::checkFaceDotProduct
(
const bool report,
const scalar orthWarn,
const labelList& checkFaces,
const List<labelPair>& baffles,
labelHashSet* setPtr
) const
{
return checkFaceDotProduct
(
report,
orthWarn,
mesh_,
cellCentres_,
faceAreas_,
checkFaces,
baffles,
setPtr
);
}
bool Foam::polyMeshGeometry::checkFacePyramids
(
const bool report,
const scalar minPyrVol,
const pointField& p,
const labelList& checkFaces,
const List<labelPair>& baffles,
labelHashSet* setPtr
) const
{
return checkFacePyramids
(
report,
minPyrVol,
mesh_,
cellCentres_,
p,
checkFaces,
baffles,
setPtr
);
}
bool Foam::polyMeshGeometry::checkFaceTets
(
const bool report,
const scalar minTetQuality,
const pointField& p,
const labelList& checkFaces,
const List<labelPair>& baffles,
labelHashSet* setPtr
) const
{
return checkFaceTets
(
report,
minTetQuality,
mesh_,
cellCentres_,
faceCentres_,
p,
checkFaces,
baffles,
setPtr
);
}
//bool Foam::polyMeshGeometry::checkFaceSkewness
//(
// const bool report,
// const scalar internalSkew,
// const scalar boundarySkew,
// const labelList& checkFaces,
// const List<labelPair>& baffles,
// labelHashSet* setPtr
//) const
//{
// return checkFaceSkewness
// (
// report,
// internalSkew,
// boundarySkew,
// mesh_,
// cellCentres_,
// faceCentres_,
// faceAreas_,
// checkFaces,
// baffles,
// setPtr
// );
//}
bool Foam::polyMeshGeometry::checkFaceWeights
(
const bool report,
const scalar warnWeight,
const labelList& checkFaces,
const List<labelPair>& baffles,
labelHashSet* setPtr
) const
{
return checkFaceWeights
(
report,
warnWeight,
mesh_,
cellCentres_,
faceCentres_,
faceAreas_,
checkFaces,
baffles,
setPtr
);
}
bool Foam::polyMeshGeometry::checkVolRatio
(
const bool report,
const scalar warnRatio,
const labelList& checkFaces,
const List<labelPair>& baffles,
labelHashSet* setPtr
) const
{
return checkVolRatio
(
report,
warnRatio,
mesh_,
cellVolumes_,
checkFaces,
baffles,
setPtr
);
}
bool Foam::polyMeshGeometry::checkFaceAngles
(
const bool report,
const scalar maxDeg,
const pointField& p,
const labelList& checkFaces,
labelHashSet* setPtr
) const
{
return checkFaceAngles
(
report,
maxDeg,
mesh_,
faceAreas_,
p,
checkFaces,
setPtr
);
}
bool Foam::polyMeshGeometry::checkFaceTwist
(
const bool report,
const scalar minTwist,
const pointField& p,
const labelList& checkFaces,
labelHashSet* setPtr
) const
{
return checkFaceTwist
(
report,
minTwist,
mesh_,
cellCentres_,
faceAreas_,
faceCentres_,
p,
checkFaces,
setPtr
);
}
bool Foam::polyMeshGeometry::checkTriangleTwist
(
const bool report,
const scalar minTwist,
const pointField& p,
const labelList& checkFaces,
labelHashSet* setPtr
) const
{
return checkTriangleTwist
(
report,
minTwist,
mesh_,
faceAreas_,
faceCentres_,
p,
checkFaces,
setPtr
);
}
bool Foam::polyMeshGeometry::checkFaceFlatness
(
const bool report,
const scalar minFlatness,
const pointField& p,
const labelList& checkFaces,
labelHashSet* setPtr
) const
{
return checkFaceFlatness
(
report,
minFlatness,
mesh_,
faceAreas_,
faceCentres_,
p,
checkFaces,
setPtr
);
}
bool Foam::polyMeshGeometry::checkFaceArea
(
const bool report,
const scalar minArea,
const labelList& checkFaces,
labelHashSet* setPtr
) const
{
return checkFaceArea
(
report,
minArea,
mesh_,
faceAreas_,
checkFaces,
setPtr
);
}
bool Foam::polyMeshGeometry::checkCellDeterminant
(
const bool report,
const scalar warnDet,
const labelList& checkFaces,
const labelList& affectedCells,
labelHashSet* setPtr
) const
{
return checkCellDeterminant
(
report,
warnDet,
mesh_,
faceAreas_,
checkFaces,
affectedCells,
setPtr
);
}
// ************************************************************************* //