Files
openfoam/applications/solvers/multiphase/reactingEulerFoam/reactingTwoPhaseEulerFoam/twoPhaseSystem/twoPhaseSystem.C
Henry Weller 22f4ad32b1 Completed boundaryField() -> boundaryFieldRef()
Resolves bug-report http://www.openfoam.org/mantisbt/view.php?id=1938

Because C++ does not support overloading based on the return-type there
is a problem defining both const and non-const member functions which
are resolved based on the const-ness of the object for which they are
called rather than the intent of the programmer declared via the
const-ness of the returned type.  The issue for the "boundaryField()"
member function is that the non-const version increments the
event-counter and checks the state of the stored old-time fields in case
the returned value is altered whereas the const version has no
side-effects and simply returns the reference.  If the the non-const
function is called within the patch-loop the event-counter may overflow.
To resolve this it in necessary to avoid calling the non-const form of
"boundaryField()" if the results is not altered and cache the reference
outside the patch-loop when mutation of the patch fields is needed.

The most straight forward way of resolving this problem is to name the
const and non-const forms of the member functions differently e.g. the
non-const form could be named:

    mutableBoundaryField()
    mutBoundaryField()
    nonConstBoundaryField()
    boundaryFieldRef()

Given that in C++ a reference is non-const unless specified as const:
"T&" vs "const T&" the logical convention would be

    boundaryFieldRef()
    boundaryFieldConstRef()

and given that the const form which is more commonly used is it could
simply be named "boundaryField()" then the logical convention is

    GeometricBoundaryField& boundaryFieldRef();

    inline const GeometricBoundaryField& boundaryField() const;

This is also consistent with the new "tmp" class for which non-const
access to the stored object is obtained using the ".ref()" member function.

This new convention for non-const access to the components of
GeometricField will be applied to "dimensionedInternalField()" and "internalField()" in the
future, i.e. "dimensionedInternalFieldRef()" and "internalFieldRef()".
2016-04-25 16:16:05 +01:00

433 lines
11 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2013-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "twoPhaseSystem.H"
#include "dragModel.H"
#include "virtualMassModel.H"
#include "MULES.H"
#include "subCycle.H"
#include "fvcDdt.H"
#include "fvcDiv.H"
#include "fvcSnGrad.H"
#include "fvcFlux.H"
#include "fvcSup.H"
#include "fvmDdt.H"
#include "fvmLaplacian.H"
#include "fvmSup.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(twoPhaseSystem, 0);
defineRunTimeSelectionTable(twoPhaseSystem, dictionary);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::twoPhaseSystem::twoPhaseSystem
(
const fvMesh& mesh
)
:
phaseSystem(mesh),
phase1_(phaseModels_[0]),
phase2_(phaseModels_[1])
{
phase2_.volScalarField::operator=(scalar(1) - phase1_);
volScalarField& alpha1 = phase1_;
mesh.setFluxRequired(alpha1.name());
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::twoPhaseSystem::~twoPhaseSystem()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField>
Foam::twoPhaseSystem::sigma() const
{
return sigma
(
phasePairKey(phase1().name(), phase2().name())
);
}
const Foam::dragModel& Foam::twoPhaseSystem::drag(const phaseModel& phase) const
{
return lookupSubModel<dragModel>(phase, otherPhase(phase));
}
Foam::tmp<Foam::volScalarField>
Foam::twoPhaseSystem::Kd() const
{
return Kd
(
phasePairKey(phase1().name(), phase2().name())
);
}
Foam::tmp<Foam::surfaceScalarField>
Foam::twoPhaseSystem::Kdf() const
{
return Kdf
(
phasePairKey(phase1().name(), phase2().name())
);
}
const Foam::virtualMassModel&
Foam::twoPhaseSystem::virtualMass(const phaseModel& phase) const
{
return lookupSubModel<virtualMassModel>(phase, otherPhase(phase));
}
Foam::tmp<Foam::volScalarField>
Foam::twoPhaseSystem::Vm() const
{
return Vm
(
phasePairKey(phase1().name(), phase2().name())
);
}
Foam::tmp<Foam::surfaceScalarField>
Foam::twoPhaseSystem::Vmf() const
{
return Vmf
(
phasePairKey(phase1().name(), phase2().name())
);
}
Foam::tmp<Foam::volVectorField>
Foam::twoPhaseSystem::F() const
{
return F
(
phasePairKey(phase1().name(), phase2().name())
);
}
Foam::tmp<Foam::surfaceScalarField>
Foam::twoPhaseSystem::Ff() const
{
return Ff
(
phasePairKey(phase1().name(), phase2().name())
);
}
Foam::tmp<Foam::volScalarField>
Foam::twoPhaseSystem::D() const
{
return D
(
phasePairKey(phase1().name(), phase2().name())
);
}
bool Foam::twoPhaseSystem::transfersMass() const
{
return transfersMass(phase1());
}
Foam::tmp<Foam::volScalarField>
Foam::twoPhaseSystem::dmdt() const
{
return dmdt
(
phasePairKey(phase1().name(), phase2().name())
);
}
void Foam::twoPhaseSystem::solve()
{
const Time& runTime = mesh_.time();
volScalarField& alpha1 = phase1_;
volScalarField& alpha2 = phase2_;
const dictionary& alphaControls = mesh_.solverDict(alpha1.name());
label nAlphaSubCycles(readLabel(alphaControls.lookup("nAlphaSubCycles")));
label nAlphaCorr(readLabel(alphaControls.lookup("nAlphaCorr")));
bool LTS = fv::localEulerDdt::enabled(mesh_);
word alphaScheme("div(phi," + alpha1.name() + ')');
word alpharScheme("div(phir," + alpha1.name() + ')');
const surfaceScalarField& phi = this->phi();
const surfaceScalarField& phi1 = phase1_.phi();
const surfaceScalarField& phi2 = phase2_.phi();
// Construct the dilatation rate source term
tmp<volScalarField::DimensionedInternalField> tdgdt;
if (phase1_.divU().valid() && phase2_.divU().valid())
{
tdgdt =
(
alpha2.dimensionedInternalField()
*phase1_.divU()().dimensionedInternalField()
- alpha1.dimensionedInternalField()
*phase2_.divU()().dimensionedInternalField()
);
}
else if (phase1_.divU().valid())
{
tdgdt =
(
alpha2.dimensionedInternalField()
*phase1_.divU()().dimensionedInternalField()
);
}
else if (phase2_.divU().valid())
{
tdgdt =
(
- alpha1.dimensionedInternalField()
*phase2_.divU()().dimensionedInternalField()
);
}
alpha1.correctBoundaryConditions();
surfaceScalarField alpha1f(fvc::interpolate(max(alpha1, scalar(0))));
surfaceScalarField phic("phic", phi);
surfaceScalarField phir("phir", phi1 - phi2);
tmp<surfaceScalarField> alphaDbyA;
if (notNull(phase1_.DbyA()) && notNull(phase2_.DbyA()))
{
surfaceScalarField DbyA(phase1_.DbyA() + phase2_.DbyA());
alphaDbyA =
fvc::interpolate(max(alpha1, scalar(0)))
*fvc::interpolate(max(alpha2, scalar(0)))
*DbyA;
phir += DbyA*fvc::snGrad(alpha1, "bounded")*mesh_.magSf();
}
for (int acorr=0; acorr<nAlphaCorr; acorr++)
{
volScalarField::DimensionedInternalField Sp
(
IOobject
(
"Sp",
runTime.timeName(),
mesh_
),
mesh_,
dimensionedScalar("Sp", dimless/dimTime, 0.0)
);
volScalarField::DimensionedInternalField Su
(
IOobject
(
"Su",
runTime.timeName(),
mesh_
),
// Divergence term is handled explicitly to be
// consistent with the explicit transport solution
fvc::div(phi)*min(alpha1, scalar(1))
);
if (tdgdt.valid())
{
scalarField& dgdt = tdgdt.ref();
forAll(dgdt, celli)
{
if (dgdt[celli] > 0.0)
{
Sp[celli] -= dgdt[celli]/max(1.0 - alpha1[celli], 1e-4);
Su[celli] += dgdt[celli]/max(1.0 - alpha1[celli], 1e-4);
}
else if (dgdt[celli] < 0.0)
{
Sp[celli] += dgdt[celli]/max(alpha1[celli], 1e-4);
}
}
}
surfaceScalarField alphaPhic1
(
fvc::flux
(
phic,
alpha1,
alphaScheme
)
+ fvc::flux
(
-fvc::flux(-phir, scalar(1) - alpha1, alpharScheme),
alpha1,
alpharScheme
)
);
surfaceScalarField::GeometricBoundaryField& alphaPhic1Bf =
alphaPhic1.boundaryFieldRef();
// Ensure that the flux at inflow BCs is preserved
forAll(alphaPhic1Bf, patchi)
{
fvsPatchScalarField& alphaPhic1p = alphaPhic1Bf[patchi];
if (!alphaPhic1p.coupled())
{
const scalarField& phi1p = phi1.boundaryField()[patchi];
const scalarField& alpha1p = alpha1.boundaryField()[patchi];
forAll(alphaPhic1p, facei)
{
if (phi1p[facei] < 0)
{
alphaPhic1p[facei] = alpha1p[facei]*phi1p[facei];
}
}
}
}
if (nAlphaSubCycles > 1)
{
tmp<volScalarField> trSubDeltaT;
if (LTS)
{
trSubDeltaT =
fv::localEulerDdt::localRSubDeltaT(mesh_, nAlphaSubCycles);
}
for
(
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
!(++alphaSubCycle).end();
)
{
surfaceScalarField alphaPhic10(alphaPhic1);
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phi,
alphaPhic10,
(alphaSubCycle.index()*Sp)(),
(Su - (alphaSubCycle.index() - 1)*Sp*alpha1)(),
phase1_.alphaMax(),
0
);
if (alphaSubCycle.index() == 1)
{
phase1_.alphaPhi() = alphaPhic10;
}
else
{
phase1_.alphaPhi() += alphaPhic10;
}
}
phase1_.alphaPhi() /= nAlphaSubCycles;
}
else
{
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phi,
alphaPhic1,
Sp,
Su,
phase1_.alphaMax(),
0
);
phase1_.alphaPhi() = alphaPhic1;
}
if (alphaDbyA.valid())
{
fvScalarMatrix alpha1Eqn
(
fvm::ddt(alpha1) - fvc::ddt(alpha1)
- fvm::laplacian(alphaDbyA, alpha1, "bounded")
);
alpha1Eqn.relax();
alpha1Eqn.solve();
phase1_.alphaPhi() += alpha1Eqn.flux();
}
phase1_.alphaRhoPhi() =
fvc::interpolate(phase1_.rho())*phase1_.alphaPhi();
phase2_.alphaPhi() = phi - phase1_.alphaPhi();
alpha2 = scalar(1) - alpha1;
phase2_.alphaRhoPhi() =
fvc::interpolate(phase2_.rho())*phase2_.alphaPhi();
Info<< alpha1.name() << " volume fraction = "
<< alpha1.weightedAverage(mesh_.V()).value()
<< " Min(alpha1) = " << min(alpha1).value()
<< " Max(alpha1) = " << max(alpha1).value()
<< endl;
}
}
// ************************************************************************* //