Files
openfoam/src/OpenFOAM/matrices/LUscalarMatrix/LUscalarMatrix.C
Mark Olesen 27aa7e4e91 ENH: improve procLduMatrix streaming and assembly of LUscalarMatrix
- reduce local overhead prior to sending for master assembly
- non-blocking mode when assembling solution vector
- automatic resizing of pivots
2024-03-07 10:40:30 +01:00

409 lines
12 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2020-2024 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "LUscalarMatrix.H"
#include "lduMatrix.H"
#include "procLduMatrix.H"
#include "procLduInterface.H"
#include "cyclicLduInterface.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(LUscalarMatrix, 0);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::LUscalarMatrix::LUscalarMatrix() noexcept
:
comm_(UPstream::worldComm)
{}
Foam::LUscalarMatrix::LUscalarMatrix(const scalarSquareMatrix& mat)
:
scalarSquareMatrix(mat),
comm_(UPstream::worldComm)
{
LUDecompose(*this, pivotIndices_);
}
Foam::LUscalarMatrix::LUscalarMatrix
(
const lduMatrix& ldum,
const FieldField<Field, scalar>& interfaceCoeffs,
const lduInterfaceFieldPtrsList& interfaces
)
:
comm_(ldum.mesh().comm())
{
if (UPstream::parRun())
{
PtrList<procLduMatrix> lduMatrices
(
UPstream::master(comm_) ? UPstream::nProcs(comm_) : 1
);
lduMatrices.set
(
0, // rank-local matrix (and/or master)
new procLduMatrix
(
ldum,
interfaceCoeffs,
interfaces
)
);
if (UPstream::master(comm_))
{
for (const int proci : UPstream::subProcs(comm_))
{
auto& mat = lduMatrices.emplace_set(proci);
IPstream::recv(mat, proci, UPstream::msgType(), comm_);
}
convert(lduMatrices);
}
else
{
OPstream::send
(
lduMatrices[0], // rank-local matrix
UPstream::masterNo(),
UPstream::msgType(),
comm_
);
}
}
else
{
convert(ldum, interfaceCoeffs, interfaces);
}
if (debug && UPstream::master(comm_))
{
const label numRows = nRows();
const label numCols = nCols();
Pout<< "LUscalarMatrix : size:" << numRows << endl;
for (label rowi = 0; rowi < numRows; ++rowi)
{
const scalar* row = operator[](rowi);
Pout<< "cell:" << rowi << " diagCoeff:" << row[rowi] << nl;
Pout<< " connects to upper cells :";
for (label coli = rowi+1; coli < numCols; ++coli)
{
if (mag(row[coli]) > SMALL)
{
Pout<< ' ' << coli << " (coeff:" << row[coli] << ')';
}
}
Pout<< nl;
Pout<< " connects to lower cells :";
for (label coli = 0; coli < rowi; ++coli)
{
if (mag(row[coli]) > SMALL)
{
Pout<< ' ' << coli << " (coeff:" << row[coli] << ')';
}
}
Pout<< nl;
}
Pout<< endl;
}
if (UPstream::master(comm_))
{
LUDecompose(*this, pivotIndices_);
}
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::LUscalarMatrix::convert
(
const lduMatrix& ldum,
const FieldField<Field, scalar>& interfaceCoeffs,
const lduInterfaceFieldPtrsList& interfaces
)
{
// Resize and fill with zero
scalarSquareMatrix::resize_nocopy(ldum.lduAddr().size());
scalarSquareMatrix::operator=(Foam::zero{});
const label* __restrict__ uPtr = ldum.lduAddr().upperAddr().begin();
const label* __restrict__ lPtr = ldum.lduAddr().lowerAddr().begin();
const scalar* __restrict__ diagPtr = ldum.diag().begin();
const scalar* __restrict__ upperPtr = ldum.upper().begin();
const scalar* __restrict__ lowerPtr = ldum.lower().begin();
const label nCells = ldum.diag().size();
const label nFaces = ldum.upper().size();
for (label cell=0; cell<nCells; cell++)
{
operator[](cell)[cell] = diagPtr[cell];
}
for (label face=0; face<nFaces; face++)
{
label uCell = uPtr[face];
label lCell = lPtr[face];
operator[](uCell)[lCell] = lowerPtr[face];
operator[](lCell)[uCell] = upperPtr[face];
}
forAll(interfaces, inti)
{
if (interfaces.set(inti))
{
const lduInterface& interface = interfaces[inti].interface();
// Assume any interfaces are cyclic ones
const label* __restrict__ lPtr = interface.faceCells().begin();
const cyclicLduInterface& cycInterface =
refCast<const cyclicLduInterface>(interface);
label nbrInt = cycInterface.neighbPatchID();
const label* __restrict__ uPtr =
interfaces[nbrInt].interface().faceCells().begin();
const scalar* __restrict__ nbrUpperLowerPtr =
interfaceCoeffs[nbrInt].begin();
label inFaces = interface.faceCells().size();
for (label face=0; face<inFaces; face++)
{
label uCell = lPtr[face];
label lCell = uPtr[face];
operator[](uCell)[lCell] -= nbrUpperLowerPtr[face];
}
}
}
}
void Foam::LUscalarMatrix::convert
(
const PtrList<procLduMatrix>& lduMatrices
)
{
procOffsets_.resize_nocopy(lduMatrices.size() + 1);
{
auto iter = procOffsets_.begin();
label nCellsTotal = 0;
*iter++ = nCellsTotal;
for (const auto& mat : lduMatrices)
{
nCellsTotal += mat.size();
*iter++ = nCellsTotal;
}
// Resize and fill with zero
scalarSquareMatrix::resize_nocopy(nCellsTotal);
scalarSquareMatrix::operator=(Foam::zero{});
}
forAll(lduMatrices, ldumi)
{
const procLduMatrix& lduMatrixi = lduMatrices[ldumi];
label offset = procOffsets_[ldumi];
const label* __restrict__ uPtr = lduMatrixi.upperAddr_.begin();
const label* __restrict__ lPtr = lduMatrixi.lowerAddr_.begin();
const scalar* __restrict__ diagPtr = lduMatrixi.diag_.begin();
const scalar* __restrict__ upperPtr = lduMatrixi.upper_.begin();
const scalar* __restrict__ lowerPtr = lduMatrixi.lower_.begin();
const label nCells = lduMatrixi.size();
const label nFaces = lduMatrixi.upper_.size();
for (label cell=0; cell<nCells; cell++)
{
label globalCell = cell + offset;
operator[](globalCell)[globalCell] = diagPtr[cell];
}
for (label face=0; face<nFaces; face++)
{
label uCell = uPtr[face] + offset;
label lCell = lPtr[face] + offset;
operator[](uCell)[lCell] = lowerPtr[face];
operator[](lCell)[uCell] = upperPtr[face];
}
const PtrList<procLduInterface>& interfaces =
lduMatrixi.interfaces_;
forAll(interfaces, inti)
{
const procLduInterface& interface = interfaces[inti];
if (interface.myProcNo_ == interface.neighbProcNo_)
{
const label* __restrict__ ulPtr = interface.faceCells_.begin();
const scalar* __restrict__ upperLowerPtr =
interface.coeffs_.begin();
label inFaces = interface.faceCells_.size()/2;
for (label face=0; face<inFaces; face++)
{
label uCell = ulPtr[face] + offset;
label lCell = ulPtr[face + inFaces] + offset;
operator[](uCell)[lCell] -= upperLowerPtr[face + inFaces];
operator[](lCell)[uCell] -= upperLowerPtr[face];
}
}
else if (interface.myProcNo_ < interface.neighbProcNo_)
{
// Interface to neighbour proc. Find on neighbour proc the
// corresponding interface. The problem is that there can
// be multiple interfaces between two processors (from
// processorCyclics) so also compare the communication tag
const PtrList<procLduInterface>& neiInterfaces =
lduMatrices[interface.neighbProcNo_].interfaces_;
label neiInterfacei = -1;
forAll(neiInterfaces, ninti)
{
if
(
(
neiInterfaces[ninti].neighbProcNo_
== interface.myProcNo_
)
&& (neiInterfaces[ninti].tag_ == interface.tag_)
)
{
neiInterfacei = ninti;
break;
}
}
if (neiInterfacei == -1)
{
FatalErrorInFunction << exit(FatalError);
}
const procLduInterface& neiInterface =
neiInterfaces[neiInterfacei];
const label* __restrict__ uPtr = interface.faceCells_.begin();
const label* __restrict__ lPtr =
neiInterface.faceCells_.begin();
const scalar* __restrict__ upperPtr = interface.coeffs_.begin();
const scalar* __restrict__ lowerPtr =
neiInterface.coeffs_.begin();
label inFaces = interface.faceCells_.size();
label neiOffset = procOffsets_[interface.neighbProcNo_];
for (label face=0; face<inFaces; face++)
{
label uCell = uPtr[face] + offset;
label lCell = lPtr[face] + neiOffset;
operator[](uCell)[lCell] -= lowerPtr[face];
operator[](lCell)[uCell] -= upperPtr[face];
}
}
}
}
}
void Foam::LUscalarMatrix::printDiagonalDominance() const
{
for (label i=0; i<m(); i++)
{
scalar sum = 0.0;
for (label j=0; j<m(); j++)
{
if (i != j)
{
sum += operator[](i)[j];
}
}
Info<< mag(sum)/mag(operator[](i)[i]) << endl;
}
}
void Foam::LUscalarMatrix::decompose(const scalarSquareMatrix& mat)
{
scalarSquareMatrix::operator=(mat);
LUDecompose(*this, pivotIndices_);
}
void Foam::LUscalarMatrix::inv(scalarSquareMatrix& M) const
{
scalarField source(m());
for (label j=0; j<m(); j++)
{
source = Zero;
source[j] = 1;
LUBacksubstitute(*this, pivotIndices_, source);
for (label i=0; i<m(); i++)
{
M(i, j) = source[i];
}
}
}
// ************************************************************************* //