Files
openfoam/applications/solvers/multiphase/interCondensingEvaporatingFoam/createFields.H

159 lines
3.4 KiB
C

Info<< "Reading field p_rgh\n" << endl;
volScalarField p_rgh
(
IOobject
(
"p_rgh",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
#include "createPhi.H"
// Create p before the thermo
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
p_rgh
);
// Creating e based thermo
autoPtr<twoPhaseMixtureEThermo> thermo;
thermo.set(new twoPhaseMixtureEThermo(U, phi));
// Create mixture and
Info<< "Creating temperaturePhaseChangeTwoPhaseMixture\n" << endl;
autoPtr<temperaturePhaseChangeTwoPhaseMixture> mixture =
temperaturePhaseChangeTwoPhaseMixture::New(thermo(), mesh);
volScalarField& T = thermo->T();
volScalarField& e = thermo->he();
// Correct e from T and alpha
thermo->correct();
volScalarField& alpha1(thermo->alpha1());
volScalarField& alpha2(thermo->alpha2());
const dimensionedScalar& rho1 = thermo->rho1();
const dimensionedScalar& rho2 = thermo->rho2();
// Need to store rho for ddt(rho, U)
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
alpha1*rho1 + alpha2*rho2,
alpha1.boundaryField().types()
);
rho.oldTime();
// Construct interface from alpha1 distribution
interfaceProperties interface
(
alpha1,
U,
thermo->transportPropertiesDict()
);
// Construct incompressible turbulence model
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(U, phi, thermo())
);
Info<< "Calculating field g.h\n" << endl;
volScalarField gh("gh", g & mesh.C());
surfaceScalarField ghf("ghf", g & mesh.Cf());
//Update p with rho
p = p_rgh + rho*gh;
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell
(
p,
p_rgh,
pimple.dict(),
pRefCell,
pRefValue
);
if (p_rgh.needReference())
{
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, pRefCell)
);
p_rgh = p - rho*gh;
}
// Turbulent Prandtl number
dimensionedScalar Prt("Prt", dimless, thermo->transportPropertiesDict());
volScalarField kappaEff
(
IOobject
(
"kappaEff",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
thermo->kappa()
);
Info<< "Creating field kinetic energy K\n" << endl;
volScalarField K("K", 0.5*magSqr(U));
Info<< "Creating field pDivU\n" << endl;
volScalarField pDivU
(
IOobject
(
"pDivU",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar("pDivU", p.dimensions()/dimTime, 0)
);