Files
openfoam/src/meshTools/searchableSurface/searchableBox.C
2010-01-15 17:34:26 +00:00

594 lines
14 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
\*---------------------------------------------------------------------------*/
#include "searchableBox.H"
#include "addToRunTimeSelectionTable.H"
#include "SortableList.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(searchableBox, 0);
addToRunTimeSelectionTable(searchableSurface, searchableBox, dict);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::searchableBox::projectOntoCoordPlane
(
const direction dir,
const point& planePt,
pointIndexHit& info
) const
{
// Set point
info.rawPoint()[dir] = planePt[dir];
// Set face
if (planePt[dir] == min()[dir])
{
info.setIndex(dir*2);
}
else if (planePt[dir] == max()[dir])
{
info.setIndex(dir*2+1);
}
else
{
FatalErrorIn("searchableBox::projectOntoCoordPlane(..)")
<< "Point on plane " << planePt
<< " is not on coordinate " << min()[dir]
<< " nor " << max()[dir] << abort(FatalError);
}
}
// Returns miss or hit with face (0..5) and region(always 0)
Foam::pointIndexHit Foam::searchableBox::findNearest
(
const point& bbMid,
const point& sample,
const scalar nearestDistSqr
) const
{
// Point can be inside or outside. For every component direction can be
// left of min, right of max or inbetween.
// - outside points: project first one x plane (either min().x()
// or max().x()), then onto y plane and finally z. You should be left
// with intersection point
// - inside point: find nearest side (compare to mid point). Project onto
// that.
// The face is set to the last projected face.
// Outside point projected onto cube. Assume faces 0..5.
pointIndexHit info(true, sample, -1);
bool outside = false;
// (for internal points) per direction what nearest cube side is
point near;
for (direction dir = 0; dir < vector::nComponents; dir++)
{
if (info.rawPoint()[dir] < min()[dir])
{
projectOntoCoordPlane(dir, min(), info);
outside = true;
}
else if (info.rawPoint()[dir] > max()[dir])
{
projectOntoCoordPlane(dir, max(), info);
outside = true;
}
else if (info.rawPoint()[dir] > bbMid[dir])
{
near[dir] = max()[dir];
}
else
{
near[dir] = min()[dir];
}
}
// For outside points the info will be correct now. Handle inside points
// using the three near distances. Project onto the nearest plane.
if (!outside)
{
vector dist(cmptMag(info.rawPoint() - near));
if (dist.x() < dist.y())
{
if (dist.x() < dist.z())
{
// Project onto x plane
projectOntoCoordPlane(vector::X, near, info);
}
else
{
projectOntoCoordPlane(vector::Z, near, info);
}
}
else
{
if (dist.y() < dist.z())
{
projectOntoCoordPlane(vector::Y, near, info);
}
else
{
projectOntoCoordPlane(vector::Z, near, info);
}
}
}
// Check if outside. Optimisation: could do some checks on distance already
// on components above
if (magSqr(info.rawPoint() - sample) > nearestDistSqr)
{
info.setMiss();
info.setIndex(-1);
}
return info;
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::searchableBox::searchableBox
(
const IOobject& io,
const treeBoundBox& bb
)
:
searchableSurface(io),
treeBoundBox(bb)
{
if (!contains(midpoint()))
{
FatalErrorIn
(
"Foam::searchableBox::searchableBox\n"
"(\n"
" const IOobject& io,\n"
" const treeBoundBox& bb\n"
")\n"
) << "Illegal bounding box specification : "
<< static_cast<const treeBoundBox>(*this) << exit(FatalError);
}
}
Foam::searchableBox::searchableBox
(
const IOobject& io,
const dictionary& dict
)
:
searchableSurface(io),
treeBoundBox(dict.lookup("min"), dict.lookup("max"))
{
if (!contains(midpoint()))
{
FatalErrorIn
(
"Foam::searchableBox::searchableBox\n"
"(\n"
" const IOobject& io,\n"
" const treeBoundBox& bb\n"
")\n"
) << "Illegal bounding box specification : "
<< static_cast<const treeBoundBox>(*this) << exit(FatalError);
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::searchableBox::~searchableBox()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
const Foam::wordList& Foam::searchableBox::regions() const
{
if (regions_.empty())
{
regions_.setSize(1);
regions_[0] = "region0";
}
return regions_;
}
Foam::pointField Foam::searchableBox::coordinates() const
{
pointField ctrs(6);
const pointField pts = treeBoundBox::points();
const faceList& fcs = treeBoundBox::faces;
forAll(fcs, i)
{
ctrs[i] = fcs[i].centre(pts);
}
return ctrs;
}
Foam::pointIndexHit Foam::searchableBox::findNearest
(
const point& sample,
const scalar nearestDistSqr
) const
{
return findNearest(midpoint(), sample, nearestDistSqr);
}
Foam::pointIndexHit Foam::searchableBox::findNearestOnEdge
(
const point& sample,
const scalar nearestDistSqr
) const
{
const point bbMid(midpoint());
// Outside point projected onto cube. Assume faces 0..5.
pointIndexHit info(true, sample, -1);
bool outside = false;
// (for internal points) per direction what nearest cube side is
point near;
for (direction dir = 0; dir < vector::nComponents; dir++)
{
if (info.rawPoint()[dir] < min()[dir])
{
projectOntoCoordPlane(dir, min(), info);
outside = true;
}
else if (info.rawPoint()[dir] > max()[dir])
{
projectOntoCoordPlane(dir, max(), info);
outside = true;
}
else if (info.rawPoint()[dir] > bbMid[dir])
{
near[dir] = max()[dir];
}
else
{
near[dir] = min()[dir];
}
}
// For outside points the info will be correct now. Handle inside points
// using the three near distances. Project onto the nearest two planes.
if (!outside)
{
// Get the per-component distance to nearest wall
vector dist(cmptMag(info.rawPoint() - near));
SortableList<scalar> sortedDist(3);
sortedDist[0] = dist[0];
sortedDist[1] = dist[1];
sortedDist[2] = dist[2];
sortedDist.sort();
// Project onto nearest
projectOntoCoordPlane(sortedDist.indices()[0], near, info);
// Project onto second nearest
projectOntoCoordPlane(sortedDist.indices()[1], near, info);
}
// Check if outside. Optimisation: could do some checks on distance already
// on components above
if (magSqr(info.rawPoint() - sample) > nearestDistSqr)
{
info.setMiss();
info.setIndex(-1);
}
return info;
}
Foam::pointIndexHit Foam::searchableBox::findNearest
(
const linePointRef& ln,
treeBoundBox& tightest,
point& linePoint
) const
{
notImplemented
(
"searchableBox::findNearest"
"(const linePointRef&, treeBoundBox&, point&)"
);
return pointIndexHit();
}
Foam::pointIndexHit Foam::searchableBox::findLine
(
const point& start,
const point& end
) const
{
pointIndexHit info(false, start, -1);
bool foundInter;
if (posBits(start) == 0)
{
if (posBits(end) == 0)
{
// Both start and end inside.
foundInter = false;
}
else
{
// end is outside. Clip to bounding box.
foundInter = intersects(end, start, info.rawPoint());
}
}
else
{
// start is outside. Clip to bounding box.
foundInter = intersects(start, end, info.rawPoint());
}
// Classify point
if (foundInter)
{
info.setHit();
for (direction dir = 0; dir < vector::nComponents; dir++)
{
if (info.rawPoint()[dir] == min()[dir])
{
info.setIndex(2*dir);
break;
}
else if (info.rawPoint()[dir] == max()[dir])
{
info.setIndex(2*dir+1);
break;
}
}
if (info.index() == -1)
{
FatalErrorIn("searchableBox::findLine(const point&, const point&)")
<< "point " << info.rawPoint()
<< " on segment " << start << end
<< " should be on face of " << *this
<< " but it isn't." << abort(FatalError);
}
}
return info;
}
Foam::pointIndexHit Foam::searchableBox::findLineAny
(
const point& start,
const point& end
) const
{
return findLine(start, end);
}
void Foam::searchableBox::findNearest
(
const pointField& samples,
const scalarField& nearestDistSqr,
List<pointIndexHit>& info
) const
{
info.setSize(samples.size());
const point bbMid(midpoint());
forAll(samples, i)
{
info[i] = findNearest(bbMid, samples[i], nearestDistSqr[i]);
}
}
void Foam::searchableBox::findLine
(
const pointField& start,
const pointField& end,
List<pointIndexHit>& info
) const
{
info.setSize(start.size());
forAll(start, i)
{
info[i] = findLine(start[i], end[i]);
}
}
void Foam::searchableBox::findLineAny
(
const pointField& start,
const pointField& end,
List<pointIndexHit>& info
) const
{
info.setSize(start.size());
forAll(start, i)
{
info[i] = findLineAny(start[i], end[i]);
}
}
void Foam::searchableBox::findLineAll
(
const pointField& start,
const pointField& end,
List<List<pointIndexHit> >& info
) const
{
info.setSize(start.size());
// Work array
DynamicList<pointIndexHit, 1, 1> hits;
// Tolerances:
// To find all intersections we add a small vector to the last intersection
// This is chosen such that
// - it is significant (SMALL is smallest representative relative tolerance;
// we need something bigger since we're doing calculations)
// - if the start-end vector is zero we still progress
const vectorField dirVec(end-start);
const scalarField magSqrDirVec(magSqr(dirVec));
const vectorField smallVec
(
Foam::sqrt(SMALL)*dirVec
+ vector(ROOTVSMALL,ROOTVSMALL,ROOTVSMALL)
);
forAll(start, pointI)
{
// See if any intersection between pt and end
pointIndexHit inter = findLine(start[pointI], end[pointI]);
if (inter.hit())
{
hits.clear();
hits.append(inter);
point pt = inter.hitPoint() + smallVec[pointI];
while (((pt-start[pointI])&dirVec[pointI]) <= magSqrDirVec[pointI])
{
// See if any intersection between pt and end
pointIndexHit inter = findLine(pt, end[pointI]);
// Check for not hit or hit same face as before (can happen
// if vector along surface of face)
if
(
!inter.hit()
|| (inter.index() == hits.last().index())
)
{
break;
}
hits.append(inter);
pt = inter.hitPoint() + smallVec[pointI];
}
info[pointI].transfer(hits);
}
else
{
info[pointI].clear();
}
}
}
void Foam::searchableBox::getRegion
(
const List<pointIndexHit>& info,
labelList& region
) const
{
region.setSize(info.size());
region = 0;
}
void Foam::searchableBox::getNormal
(
const List<pointIndexHit>& info,
vectorField& normal
) const
{
normal.setSize(info.size());
normal = vector::zero;
forAll(info, i)
{
if (info[i].hit())
{
normal[i] = treeBoundBox::faceNormals[info[i].index()];
}
else
{
// Set to what?
}
}
}
void Foam::searchableBox::getVolumeType
(
const pointField& points,
List<volumeType>& volType
) const
{
volType.setSize(points.size());
volType = INSIDE;
forAll(points, pointI)
{
const point& pt = points[pointI];
for (direction dir = 0; dir < vector::nComponents; dir++)
{
if (pt[dir] < min()[dir] || pt[dir] > max()[dir])
{
volType[pointI] = OUTSIDE;
break;
}
}
}
}
// ************************************************************************* //