Files
openfoam/applications/solvers/multiphase/twoPhaseEulerFoam/twoPhaseSystem/twoPhaseSystem.C
Mark Olesen 2f86cdc712 STYLE: more consistent use of dimensioned Zero
- when constructing dimensioned fields that are to be zero-initialized,
  it is preferrable to use a form such as

      dimensionedScalar(dims, Zero)
      dimensionedVector(dims, Zero)

  rather than

      dimensionedScalar("0", dims, 0)
      dimensionedVector("zero", dims, vector::zero)

  This reduces clutter and also avoids any suggestion that the name of
  the dimensioned quantity has any influence on the field's name.

  An even shorter version is possible. Eg,

      dimensionedScalar(dims)

  but reduces the clarity of meaning.

- NB: UniformDimensionedField is an exception to these style changes
  since it does use the name of the dimensioned type (instead of the
  regIOobject).
2018-03-16 10:24:03 +01:00

591 lines
14 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2013-2017 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "twoPhaseSystem.H"
#include "PhaseCompressibleTurbulenceModel.H"
#include "BlendedInterfacialModel.H"
#include "virtualMassModel.H"
#include "heatTransferModel.H"
#include "liftModel.H"
#include "wallLubricationModel.H"
#include "turbulentDispersionModel.H"
#include "fvMatrix.H"
#include "surfaceInterpolate.H"
#include "MULES.H"
#include "subCycle.H"
#include "fvcDdt.H"
#include "fvcDiv.H"
#include "fvcSnGrad.H"
#include "fvcFlux.H"
#include "fvcCurl.H"
#include "fvmDdt.H"
#include "fvmLaplacian.H"
#include "fixedValueFvsPatchFields.H"
#include "blendingMethod.H"
#include "HashPtrTable.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::twoPhaseSystem::twoPhaseSystem
(
const fvMesh& mesh,
const dimensionedVector& g
)
:
IOdictionary
(
IOobject
(
"phaseProperties",
mesh.time().constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
),
mesh_(mesh),
phase1_
(
*this,
*this,
wordList(lookup("phases"))[0]
),
phase2_
(
*this,
*this,
wordList(lookup("phases"))[1]
),
phi_
(
IOobject
(
"phi",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
this->calcPhi()
),
dgdt_
(
IOobject
(
"dgdt",
mesh.time().timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar(dimless/dimTime, Zero)
)
{
phase2_.volScalarField::operator=(scalar(1) - phase1_);
// Blending
forAllConstIter(dictionary, subDict("blending"), iter)
{
blendingMethods_.insert
(
iter().dict().dictName(),
blendingMethod::New
(
iter().dict(),
wordList(lookup("phases"))
)
);
}
// Pairs
phasePair::scalarTable sigmaTable(lookup("sigma"));
phasePair::dictTable aspectRatioTable(lookup("aspectRatio"));
pair_.reset
(
new phasePair
(
phase1_,
phase2_,
g,
sigmaTable
)
);
pair1In2_.reset
(
new orderedPhasePair
(
phase1_,
phase2_,
g,
sigmaTable,
aspectRatioTable
)
);
pair2In1_.reset
(
new orderedPhasePair
(
phase2_,
phase1_,
g,
sigmaTable,
aspectRatioTable
)
);
// Models
drag_.reset
(
new BlendedInterfacialModel<dragModel>
(
lookup("drag"),
(
blendingMethods_.found("drag")
? *(blendingMethods_["drag"])
: *(blendingMethods_["default"])
),
*pair_,
*pair1In2_,
*pair2In1_,
false // Do not zero drag coefficent at fixed-flux BCs
)
);
virtualMass_.reset
(
new BlendedInterfacialModel<virtualMassModel>
(
lookup("virtualMass"),
(
blendingMethods_.found("virtualMass")
? *(blendingMethods_["virtualMass"])
: *(blendingMethods_["default"])
),
*pair_,
*pair1In2_,
*pair2In1_
)
);
heatTransfer_.reset
(
new BlendedInterfacialModel<heatTransferModel>
(
lookup("heatTransfer"),
(
blendingMethods_.found("heatTransfer")
? *(blendingMethods_["heatTransfer"])
: *(blendingMethods_["default"])
),
*pair_,
*pair1In2_,
*pair2In1_
)
);
lift_.reset
(
new BlendedInterfacialModel<liftModel>
(
lookup("lift"),
(
blendingMethods_.found("lift")
? *(blendingMethods_["lift"])
: *(blendingMethods_["default"])
),
*pair_,
*pair1In2_,
*pair2In1_
)
);
wallLubrication_.reset
(
new BlendedInterfacialModel<wallLubricationModel>
(
lookup("wallLubrication"),
(
blendingMethods_.found("wallLubrication")
? *(blendingMethods_["wallLubrication"])
: *(blendingMethods_["default"])
),
*pair_,
*pair1In2_,
*pair2In1_
)
);
turbulentDispersion_.reset
(
new BlendedInterfacialModel<turbulentDispersionModel>
(
lookup("turbulentDispersion"),
(
blendingMethods_.found("turbulentDispersion")
? *(blendingMethods_["turbulentDispersion"])
: *(blendingMethods_["default"])
),
*pair_,
*pair1In2_,
*pair2In1_
)
);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::twoPhaseSystem::~twoPhaseSystem()
{} // Define here (incomplete type in header)
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::rho() const
{
return phase1_*phase1_.thermo().rho() + phase2_*phase2_.thermo().rho();
}
Foam::tmp<Foam::volVectorField> Foam::twoPhaseSystem::U() const
{
return phase1_*phase1_.U() + phase2_*phase2_.U();
}
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::calcPhi() const
{
return
fvc::interpolate(phase1_)*phase1_.phi()
+ fvc::interpolate(phase2_)*phase2_.phi();
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::Kd() const
{
return drag_->K();
}
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::Kdf() const
{
return drag_->Kf();
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::Vm() const
{
return virtualMass_->K();
}
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::Vmf() const
{
return virtualMass_->Kf();
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::Kh() const
{
return heatTransfer_->K();
}
Foam::tmp<Foam::volVectorField> Foam::twoPhaseSystem::F() const
{
return lift_->F<vector>() + wallLubrication_->F<vector>();
}
Foam::tmp<Foam::surfaceScalarField> Foam::twoPhaseSystem::Ff() const
{
return lift_->Ff() + wallLubrication_->Ff();
}
Foam::tmp<Foam::volScalarField> Foam::twoPhaseSystem::D() const
{
return turbulentDispersion_->D();
}
void Foam::twoPhaseSystem::solve()
{
const Time& runTime = mesh_.time();
volScalarField& alpha1 = phase1_;
volScalarField& alpha2 = phase2_;
const surfaceScalarField& phi1 = phase1_.phi();
const surfaceScalarField& phi2 = phase2_.phi();
const dictionary& alphaControls = mesh_.solverDict
(
alpha1.name()
);
label nAlphaSubCycles(readLabel(alphaControls.lookup("nAlphaSubCycles")));
label nAlphaCorr(readLabel(alphaControls.lookup("nAlphaCorr")));
word alphaScheme("div(phi," + alpha1.name() + ')');
word alpharScheme("div(phir," + alpha1.name() + ')');
alpha1.correctBoundaryConditions();
surfaceScalarField phic("phic", phi_);
surfaceScalarField phir("phir", phi1 - phi2);
tmp<surfaceScalarField> alpha1alpha2f;
if (pPrimeByA_.valid())
{
alpha1alpha2f =
fvc::interpolate(max(alpha1, scalar(0)))
*fvc::interpolate(max(alpha2, scalar(0)));
surfaceScalarField phiP
(
pPrimeByA_()*fvc::snGrad(alpha1, "bounded")*mesh_.magSf()
);
phir += phiP;
}
for (int acorr=0; acorr<nAlphaCorr; acorr++)
{
volScalarField::Internal Sp
(
IOobject
(
"Sp",
runTime.timeName(),
mesh_
),
mesh_,
dimensionedScalar(dgdt_.dimensions(), Zero)
);
volScalarField::Internal Su
(
IOobject
(
"Su",
runTime.timeName(),
mesh_
),
// Divergence term is handled explicitly to be
// consistent with the explicit transport solution
fvc::div(phi_)*min(alpha1, scalar(1))
);
forAll(dgdt_, celli)
{
if (dgdt_[celli] > 0.0)
{
Sp[celli] -= dgdt_[celli]/max(1.0 - alpha1[celli], 1e-4);
Su[celli] += dgdt_[celli]/max(1.0 - alpha1[celli], 1e-4);
}
else if (dgdt_[celli] < 0.0)
{
Sp[celli] += dgdt_[celli]/max(alpha1[celli], 1e-4);
}
}
surfaceScalarField alphaPhic1
(
fvc::flux
(
phic,
alpha1,
alphaScheme
)
+ fvc::flux
(
-fvc::flux(-phir, scalar(1) - alpha1, alpharScheme),
alpha1,
alpharScheme
)
);
phase1_.correctInflowOutflow(alphaPhic1);
if (nAlphaSubCycles > 1)
{
for
(
subCycle<volScalarField> alphaSubCycle(alpha1, nAlphaSubCycles);
!(++alphaSubCycle).end();
)
{
surfaceScalarField alphaPhic10(alphaPhic1);
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phi_,
alphaPhic10,
(alphaSubCycle.index()*Sp)(),
(Su - (alphaSubCycle.index() - 1)*Sp*alpha1)(),
phase1_.alphaMax(),
0
);
if (alphaSubCycle.index() == 1)
{
phase1_.alphaPhi() = alphaPhic10;
}
else
{
phase1_.alphaPhi() += alphaPhic10;
}
}
phase1_.alphaPhi() /= nAlphaSubCycles;
}
else
{
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phi_,
alphaPhic1,
Sp,
Su,
phase1_.alphaMax(),
0
);
phase1_.alphaPhi() = alphaPhic1;
}
if (pPrimeByA_.valid())
{
fvScalarMatrix alpha1Eqn
(
fvm::ddt(alpha1) - fvc::ddt(alpha1)
- fvm::laplacian(alpha1alpha2f()*pPrimeByA_(), alpha1, "bounded")
);
alpha1Eqn.relax();
alpha1Eqn.solve();
phase1_.alphaPhi() += alpha1Eqn.flux();
}
phase1_.alphaRhoPhi() =
fvc::interpolate(phase1_.rho())*phase1_.alphaPhi();
phase2_.alphaPhi() = phi_ - phase1_.alphaPhi();
phase2_.correctInflowOutflow(phase2_.alphaPhi());
phase2_.alphaRhoPhi() =
fvc::interpolate(phase2_.rho())*phase2_.alphaPhi();
Info<< alpha1.name() << " volume fraction = "
<< alpha1.weightedAverage(mesh_.V()).value()
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
<< " Max(" << alpha1.name() << ") = " << max(alpha1).value()
<< endl;
// Ensure the phase-fractions are bounded
alpha1.max(0);
alpha1.min(1);
alpha2 = scalar(1) - alpha1;
}
}
void Foam::twoPhaseSystem::correct()
{
phase1_.correct();
phase2_.correct();
}
void Foam::twoPhaseSystem::correctTurbulence()
{
phase1_.turbulence().correct();
phase2_.turbulence().correct();
}
bool Foam::twoPhaseSystem::read()
{
if (regIOobject::read())
{
bool readOK = true;
readOK &= phase1_.read(*this);
readOK &= phase2_.read(*this);
// models ...
return readOK;
}
else
{
return false;
}
}
const Foam::dragModel& Foam::twoPhaseSystem::drag(const phaseModel& phase) const
{
return drag_->phaseModel(phase);
}
const Foam::virtualMassModel&
Foam::twoPhaseSystem::virtualMass(const phaseModel& phase) const
{
return virtualMass_->phaseModel(phase);
}
const Foam::dimensionedScalar& Foam::twoPhaseSystem::sigma() const
{
return pair_->sigma();
}
// ************************************************************************* //