Files
openfoam/src/finiteVolume/fvMesh/fvMesh.C
Henry Weller 45f73bf64f GeometricField: New non-const access function boundaryFieldRef()
There is a need to specify const or non-const access to a non-const
object which is not currently possible with the "boundaryField()" access
function the const-ness of the return of which is defined by the
const-ness of the object for which it is called.  For consistency with
the latest "tmp" storage class in which non-const access is obtained
with the "ref()" function it is proposed to replace the non-const form
of "boundaryField()" with "boundaryFieldRef()".

Thanks to Mattijs Janssens for starting the process of migration to
"boundaryFieldRef()" and providing a patch for the OpenFOAM and
finiteVolume libraries.
2016-04-23 23:07:28 +01:00

904 lines
22 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "fvMesh.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "slicedVolFields.H"
#include "slicedSurfaceFields.H"
#include "SubField.H"
#include "demandDrivenData.H"
#include "fvMeshLduAddressing.H"
#include "mapPolyMesh.H"
#include "MapFvFields.H"
#include "fvMeshMapper.H"
#include "mapClouds.H"
#include "MeshObject.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(fvMesh, 0);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::fvMesh::clearGeomNotOldVol()
{
meshObject::clearUpto
<
fvMesh,
GeometricMeshObject,
MoveableMeshObject
>(*this);
meshObject::clearUpto
<
lduMesh,
GeometricMeshObject,
MoveableMeshObject
>(*this);
slicedVolScalarField::DimensionedInternalField* VPtr =
static_cast<slicedVolScalarField::DimensionedInternalField*>(VPtr_);
deleteDemandDrivenData(VPtr);
VPtr_ = NULL;
deleteDemandDrivenData(SfPtr_);
deleteDemandDrivenData(magSfPtr_);
deleteDemandDrivenData(CPtr_);
deleteDemandDrivenData(CfPtr_);
}
void Foam::fvMesh::updateGeomNotOldVol()
{
bool haveV = (VPtr_ != NULL);
bool haveSf = (SfPtr_ != NULL);
bool haveMagSf = (magSfPtr_ != NULL);
bool haveCP = (CPtr_ != NULL);
bool haveCf = (CfPtr_ != NULL);
clearGeomNotOldVol();
// Now recreate the fields
if (haveV)
{
(void)V();
}
if (haveSf)
{
(void)Sf();
}
if (haveMagSf)
{
(void)magSf();
}
if (haveCP)
{
(void)C();
}
if (haveCf)
{
(void)Cf();
}
}
void Foam::fvMesh::clearGeom()
{
clearGeomNotOldVol();
deleteDemandDrivenData(V0Ptr_);
deleteDemandDrivenData(V00Ptr_);
// Mesh motion flux cannot be deleted here because the old-time flux
// needs to be saved.
}
void Foam::fvMesh::clearAddressing(const bool isMeshUpdate)
{
if (debug)
{
InfoInFunction << "isMeshUpdate: " << isMeshUpdate << endl;
}
if (isMeshUpdate)
{
// Part of a mesh update. Keep meshObjects that have an updateMesh
// callback
meshObject::clearUpto
<
fvMesh,
TopologicalMeshObject,
UpdateableMeshObject
>
(
*this
);
meshObject::clearUpto
<
lduMesh,
TopologicalMeshObject,
UpdateableMeshObject
>
(
*this
);
}
else
{
meshObject::clear<fvMesh, TopologicalMeshObject>(*this);
meshObject::clear<lduMesh, TopologicalMeshObject>(*this);
}
deleteDemandDrivenData(lduPtr_);
}
void Foam::fvMesh::storeOldVol(const scalarField& V)
{
if (curTimeIndex_ < time().timeIndex())
{
if (debug)
{
InfoInFunction
<< " Storing old time volumes since from time " << curTimeIndex_
<< " and time now " << time().timeIndex()
<< " V:" << V.size()
<< endl;
}
if (V00Ptr_ && V0Ptr_)
{
// Copy V0 into V00 storage
*V00Ptr_ = *V0Ptr_;
}
if (V0Ptr_)
{
// Copy V into V0 storage
V0Ptr_->scalarField::operator=(V);
}
else
{
// Allocate V0 storage, fill with V
V0Ptr_ = new DimensionedField<scalar, volMesh>
(
IOobject
(
"V0",
time().timeName(),
*this,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
*this,
dimVolume
);
scalarField& V0 = *V0Ptr_;
// Note: V0 now sized with current mesh, not with (potentially
// different size) V.
V0.setSize(V.size());
V0 = V;
}
curTimeIndex_ = time().timeIndex();
if (debug)
{
InfoInFunction
<< " Stored old time volumes V0:" << V0Ptr_->size()
<< endl;
if (V00Ptr_)
{
InfoInFunction
<< " Stored oldold time volumes V00:" << V00Ptr_->size()
<< endl;
}
}
}
}
void Foam::fvMesh::clearOut()
{
clearGeom();
surfaceInterpolation::clearOut();
clearAddressing();
// Clear mesh motion flux
deleteDemandDrivenData(phiPtr_);
polyMesh::clearOut();
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::fvMesh::fvMesh(const IOobject& io)
:
polyMesh(io),
surfaceInterpolation(*this),
fvSchemes(static_cast<const objectRegistry&>(*this)),
fvSolution(static_cast<const objectRegistry&>(*this)),
data(static_cast<const objectRegistry&>(*this)),
boundary_(*this, boundaryMesh()),
lduPtr_(NULL),
curTimeIndex_(time().timeIndex()),
VPtr_(NULL),
V0Ptr_(NULL),
V00Ptr_(NULL),
SfPtr_(NULL),
magSfPtr_(NULL),
CPtr_(NULL),
CfPtr_(NULL),
phiPtr_(NULL)
{
if (debug)
{
InfoInFunction << "Constructing fvMesh from IOobject" << endl;
}
// Check the existance of the cell volumes and read if present
// and set the storage of V00
if (isFile(time().timePath()/"V0"))
{
V0Ptr_ = new DimensionedField<scalar, volMesh>
(
IOobject
(
"V0",
time().timeName(),
*this,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
),
*this
);
V00();
}
// Check the existance of the mesh fluxes, read if present and set the
// mesh to be moving
if (isFile(time().timePath()/"meshPhi"))
{
phiPtr_ = new surfaceScalarField
(
IOobject
(
"meshPhi",
time().timeName(),
*this,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
),
*this
);
// The mesh is now considered moving so the old-time cell volumes
// will be required for the time derivatives so if they haven't been
// read initialise to the current cell volumes
if (!V0Ptr_)
{
V0Ptr_ = new DimensionedField<scalar, volMesh>
(
IOobject
(
"V0",
time().timeName(),
*this,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
V()
);
}
moving(true);
}
}
Foam::fvMesh::fvMesh
(
const IOobject& io,
const Xfer<pointField>& points,
const cellShapeList& shapes,
const faceListList& boundaryFaces,
const wordList& boundaryPatchNames,
const PtrList<dictionary>& boundaryDicts,
const word& defaultBoundaryPatchName,
const word& defaultBoundaryPatchType,
const bool syncPar
)
:
polyMesh
(
io,
points,
shapes,
boundaryFaces,
boundaryPatchNames,
boundaryDicts,
defaultBoundaryPatchName,
defaultBoundaryPatchType,
syncPar
),
surfaceInterpolation(*this),
fvSchemes(static_cast<const objectRegistry&>(*this)),
fvSolution(static_cast<const objectRegistry&>(*this)),
data(static_cast<const objectRegistry&>(*this)),
boundary_(*this, boundaryMesh()),
lduPtr_(NULL),
curTimeIndex_(time().timeIndex()),
VPtr_(NULL),
V0Ptr_(NULL),
V00Ptr_(NULL),
SfPtr_(NULL),
magSfPtr_(NULL),
CPtr_(NULL),
CfPtr_(NULL),
phiPtr_(NULL)
{
if (debug)
{
InfoInFunction << "Constructing fvMesh from cellShapes" << endl;
}
}
Foam::fvMesh::fvMesh
(
const IOobject& io,
const Xfer<pointField>& points,
const Xfer<faceList>& faces,
const Xfer<labelList>& allOwner,
const Xfer<labelList>& allNeighbour,
const bool syncPar
)
:
polyMesh(io, points, faces, allOwner, allNeighbour, syncPar),
surfaceInterpolation(*this),
fvSchemes(static_cast<const objectRegistry&>(*this)),
fvSolution(static_cast<const objectRegistry&>(*this)),
data(static_cast<const objectRegistry&>(*this)),
boundary_(*this, boundaryMesh()),
lduPtr_(NULL),
curTimeIndex_(time().timeIndex()),
VPtr_(NULL),
V0Ptr_(NULL),
V00Ptr_(NULL),
SfPtr_(NULL),
magSfPtr_(NULL),
CPtr_(NULL),
CfPtr_(NULL),
phiPtr_(NULL)
{
if (debug)
{
InfoInFunction << "Constructing fvMesh from components" << endl;
}
}
Foam::fvMesh::fvMesh
(
const IOobject& io,
const Xfer<pointField>& points,
const Xfer<faceList>& faces,
const Xfer<cellList>& cells,
const bool syncPar
)
:
polyMesh(io, points, faces, cells, syncPar),
surfaceInterpolation(*this),
fvSchemes(static_cast<const objectRegistry&>(*this)),
fvSolution(static_cast<const objectRegistry&>(*this)),
data(static_cast<const objectRegistry&>(*this)),
boundary_(*this),
lduPtr_(NULL),
curTimeIndex_(time().timeIndex()),
VPtr_(NULL),
V0Ptr_(NULL),
V00Ptr_(NULL),
SfPtr_(NULL),
magSfPtr_(NULL),
CPtr_(NULL),
CfPtr_(NULL),
phiPtr_(NULL)
{
if (debug)
{
InfoInFunction << "Constructing fvMesh from components" << endl;
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::fvMesh::~fvMesh()
{
clearOut();
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::fvMesh::addFvPatches
(
const List<polyPatch*> & p,
const bool validBoundary
)
{
if (boundary().size())
{
FatalErrorInFunction
<< " boundary already exists"
<< abort(FatalError);
}
// first add polyPatches
addPatches(p, validBoundary);
boundary_.addPatches(boundaryMesh());
}
void Foam::fvMesh::removeFvBoundary()
{
if (debug)
{
InfoInFunction << "Removing boundary patches." << endl;
}
// Remove fvBoundaryMesh data first.
boundary_.clear();
boundary_.setSize(0);
polyMesh::removeBoundary();
clearOut();
}
Foam::polyMesh::readUpdateState Foam::fvMesh::readUpdate()
{
if (debug)
{
InfoInFunction << "Updating fvMesh. ";
}
polyMesh::readUpdateState state = polyMesh::readUpdate();
if (state == polyMesh::TOPO_PATCH_CHANGE)
{
if (debug)
{
Info<< "Boundary and topological update" << endl;
}
boundary_.readUpdate(boundaryMesh());
clearOut();
}
else if (state == polyMesh::TOPO_CHANGE)
{
if (debug)
{
Info<< "Topological update" << endl;
}
clearOut();
}
else if (state == polyMesh::POINTS_MOVED)
{
if (debug)
{
Info<< "Point motion update" << endl;
}
clearGeom();
}
else
{
if (debug)
{
Info<< "No update" << endl;
}
}
return state;
}
const Foam::fvBoundaryMesh& Foam::fvMesh::boundary() const
{
return boundary_;
}
const Foam::lduAddressing& Foam::fvMesh::lduAddr() const
{
if (!lduPtr_)
{
lduPtr_ = new fvMeshLduAddressing(*this);
}
return *lduPtr_;
}
void Foam::fvMesh::mapFields(const mapPolyMesh& meshMap)
{
if (debug)
{
InfoInFunction
<< " nOldCells:" << meshMap.nOldCells()
<< " nCells:" << nCells()
<< " nOldFaces:" << meshMap.nOldFaces()
<< " nFaces:" << nFaces()
<< endl;
}
// We require geometric properties valid for the old mesh
if
(
meshMap.cellMap().size() != nCells()
|| meshMap.faceMap().size() != nFaces()
)
{
FatalErrorInFunction
<< "mapPolyMesh does not correspond to the old mesh."
<< " nCells:" << nCells()
<< " cellMap:" << meshMap.cellMap().size()
<< " nOldCells:" << meshMap.nOldCells()
<< " nFaces:" << nFaces()
<< " faceMap:" << meshMap.faceMap().size()
<< " nOldFaces:" << meshMap.nOldFaces()
<< exit(FatalError);
}
// Create a mapper
const fvMeshMapper mapper(*this, meshMap);
// Map all the volFields in the objectRegistry
MapGeometricFields<scalar, fvPatchField, fvMeshMapper, volMesh>
(mapper);
MapGeometricFields<vector, fvPatchField, fvMeshMapper, volMesh>
(mapper);
MapGeometricFields<sphericalTensor, fvPatchField, fvMeshMapper, volMesh>
(mapper);
MapGeometricFields<symmTensor, fvPatchField, fvMeshMapper, volMesh>
(mapper);
MapGeometricFields<tensor, fvPatchField, fvMeshMapper, volMesh>
(mapper);
// Map all the surfaceFields in the objectRegistry
MapGeometricFields<scalar, fvsPatchField, fvMeshMapper, surfaceMesh>
(mapper);
MapGeometricFields<vector, fvsPatchField, fvMeshMapper, surfaceMesh>
(mapper);
MapGeometricFields<symmTensor, fvsPatchField, fvMeshMapper, surfaceMesh>
(mapper);
MapGeometricFields<symmTensor, fvsPatchField, fvMeshMapper, surfaceMesh>
(mapper);
MapGeometricFields<tensor, fvsPatchField, fvMeshMapper, surfaceMesh>
(mapper);
// Map all the dimensionedFields in the objectRegistry
MapDimensionedFields<scalar, fvMeshMapper, volMesh>(mapper);
MapDimensionedFields<vector, fvMeshMapper, volMesh>(mapper);
MapDimensionedFields<sphericalTensor, fvMeshMapper, volMesh>(mapper);
MapDimensionedFields<symmTensor, fvMeshMapper, volMesh>(mapper);
MapDimensionedFields<tensor, fvMeshMapper, volMesh>(mapper);
// Map all the clouds in the objectRegistry
mapClouds(*this, meshMap);
const labelList& cellMap = meshMap.cellMap();
// Map the old volume. Just map to new cell labels.
if (V0Ptr_)
{
scalarField& V0 = *V0Ptr_;
scalarField savedV0(V0);
V0.setSize(nCells());
forAll(V0, i)
{
if (cellMap[i] > -1)
{
V0[i] = savedV0[cellMap[i]];
}
else
{
V0[i] = 0.0;
}
}
// Inject volume of merged cells
label nMerged = 0;
forAll(meshMap.reverseCellMap(), oldCellI)
{
label index = meshMap.reverseCellMap()[oldCellI];
if (index < -1)
{
label cellI = -index-2;
V0[cellI] += savedV0[oldCellI];
nMerged++;
}
}
if (debug)
{
Info<< "Mapping old time volume V0. Merged "
<< nMerged << " out of " << nCells() << " cells" << endl;
}
}
// Map the old-old volume. Just map to new cell labels.
if (V00Ptr_)
{
scalarField& V00 = *V00Ptr_;
scalarField savedV00(V00);
V00.setSize(nCells());
forAll(V00, i)
{
if (cellMap[i] > -1)
{
V00[i] = savedV00[cellMap[i]];
}
else
{
V00[i] = 0.0;
}
}
// Inject volume of merged cells
label nMerged = 0;
forAll(meshMap.reverseCellMap(), oldCellI)
{
label index = meshMap.reverseCellMap()[oldCellI];
if (index < -1)
{
label cellI = -index-2;
V00[cellI] += savedV00[oldCellI];
nMerged++;
}
}
if (debug)
{
Info<< "Mapping old time volume V00. Merged "
<< nMerged << " out of " << nCells() << " cells" << endl;
}
}
}
Foam::tmp<Foam::scalarField> Foam::fvMesh::movePoints(const pointField& p)
{
// Grab old time volumes if the time has been incremented
// This will update V0, V00
if (curTimeIndex_ < time().timeIndex())
{
storeOldVol(V());
}
if (!phiPtr_)
{
// Create mesh motion flux
phiPtr_ = new surfaceScalarField
(
IOobject
(
"meshPhi",
this->time().timeName(),
*this,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
*this,
dimVolume/dimTime
);
}
else
{
// Grab old time mesh motion fluxes if the time has been incremented
if (phiPtr_->timeIndex() != time().timeIndex())
{
phiPtr_->oldTime();
}
}
surfaceScalarField& phi = *phiPtr_;
// Move the polyMesh and set the mesh motion fluxes to the swept-volumes
scalar rDeltaT = 1.0/time().deltaTValue();
tmp<scalarField> tsweptVols = polyMesh::movePoints(p);
scalarField& sweptVols = tsweptVols.ref();
phi.internalField() = scalarField::subField(sweptVols, nInternalFaces());
phi.internalField() *= rDeltaT;
const fvPatchList& patches = boundary();
surfaceScalarField::GeometricBoundaryField& phibf = phi.boundaryFieldRef();
forAll(patches, patchI)
{
phibf[patchI] = patches[patchI].patchSlice(sweptVols);
phibf[patchI] *= rDeltaT;
}
// Update or delete the local geometric properties as early as possible so
// they can be used if necessary. These get recreated here instead of
// demand driven since they might do parallel transfers which can conflict
// with when they're actually being used.
// Note that between above "polyMesh::movePoints(p)" and here nothing
// should use the local geometric properties.
updateGeomNotOldVol();
// Update other local data
boundary_.movePoints();
surfaceInterpolation::movePoints();
meshObject::movePoints<fvMesh>(*this);
meshObject::movePoints<lduMesh>(*this);
return tsweptVols;
}
void Foam::fvMesh::updateMesh(const mapPolyMesh& mpm)
{
// Update polyMesh. This needs to keep volume existent!
polyMesh::updateMesh(mpm);
if (VPtr_)
{
// Grab old time volumes if the time has been incremented
// This will update V0, V00
storeOldVol(mpm.oldCellVolumes());
// Few checks
if (VPtr_ && (V().size() != mpm.nOldCells()))
{
FatalErrorInFunction
<< "V:" << V().size()
<< " not equal to the number of old cells "
<< mpm.nOldCells()
<< exit(FatalError);
}
if (V0Ptr_ && (V0Ptr_->size() != mpm.nOldCells()))
{
FatalErrorInFunction
<< "V0:" << V0Ptr_->size()
<< " not equal to the number of old cells "
<< mpm.nOldCells()
<< exit(FatalError);
}
if (V00Ptr_ && (V00Ptr_->size() != mpm.nOldCells()))
{
FatalErrorInFunction
<< "V0:" << V00Ptr_->size()
<< " not equal to the number of old cells "
<< mpm.nOldCells()
<< exit(FatalError);
}
}
// Clear mesh motion flux (note: could instead save & map like volumes)
deleteDemandDrivenData(phiPtr_);
// Clear the sliced fields
clearGeomNotOldVol();
// Map all fields
mapFields(mpm);
// Clear the current volume and other geometry factors
surfaceInterpolation::clearOut();
// Clear any non-updateable addressing
clearAddressing(true);
meshObject::updateMesh<fvMesh>(*this, mpm);
meshObject::updateMesh<lduMesh>(*this, mpm);
}
bool Foam::fvMesh::writeObjects
(
IOstream::streamFormat fmt,
IOstream::versionNumber ver,
IOstream::compressionType cmp
) const
{
return polyMesh::writeObject(fmt, ver, cmp);
}
bool Foam::fvMesh::write() const
{
bool ok = true;
if (phiPtr_)
{
ok = phiPtr_->write();
}
return ok && polyMesh::write();
}
template<>
typename Foam::pTraits<Foam::sphericalTensor>::labelType
Foam::fvMesh::validComponents<Foam::sphericalTensor>() const
{
return Foam::pTraits<Foam::sphericalTensor>::labelType(1);
}
// * * * * * * * * * * * * * * * Member Operators * * * * * * * * * * * * * //
bool Foam::fvMesh::operator!=(const fvMesh& bm) const
{
return &bm != this;
}
bool Foam::fvMesh::operator==(const fvMesh& bm) const
{
return &bm == this;
}
// ************************************************************************* //