Files
openfoam/src/postProcessing/functionObjects/forces/forces/forces.C

471 lines
13 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
\*---------------------------------------------------------------------------*/
#include "forces.H"
#include "volFields.H"
#include "dictionary.H"
#include "Time.H"
#include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H"
#include "incompressible/RAS/RASModel/RASModel.H"
#include "incompressible/LES/LESModel/LESModel.H"
#include "basicThermo.H"
#include "compressible/RAS/RASModel/RASModel.H"
#include "compressible/LES/LESModel/LESModel.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(forces, 0);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
Foam::tmp<Foam::volSymmTensorField> Foam::forces::devRhoReff() const
{
if (obr_.foundObject<compressible::RASModel>("RASProperties"))
{
const compressible::RASModel& ras
= obr_.lookupObject<compressible::RASModel>("RASProperties");
return ras.devRhoReff();
}
else if (obr_.foundObject<incompressible::RASModel>("RASProperties"))
{
const incompressible::RASModel& ras
= obr_.lookupObject<incompressible::RASModel>("RASProperties");
return rho()*ras.devReff();
}
else if (obr_.foundObject<compressible::LESModel>("LESProperties"))
{
const compressible::LESModel& les =
obr_.lookupObject<compressible::LESModel>("LESProperties");
return les.devRhoBeff();
}
else if (obr_.foundObject<incompressible::LESModel>("LESProperties"))
{
const incompressible::LESModel& les
= obr_.lookupObject<incompressible::LESModel>("LESProperties");
return rho()*les.devBeff();
}
else if (obr_.foundObject<basicThermo>("thermophysicalProperties"))
{
const basicThermo& thermo =
obr_.lookupObject<basicThermo>("thermophysicalProperties");
const volVectorField& U = obr_.lookupObject<volVectorField>(UName_);
return -thermo.mu()*dev(twoSymm(fvc::grad(U)));
}
else if
(
obr_.foundObject<singlePhaseTransportModel>("transportProperties")
)
{
const singlePhaseTransportModel& laminarT =
obr_.lookupObject<singlePhaseTransportModel>
("transportProperties");
const volVectorField& U = obr_.lookupObject<volVectorField>(UName_);
return -rho()*laminarT.nu()*dev(twoSymm(fvc::grad(U)));
}
else if (obr_.foundObject<dictionary>("transportProperties"))
{
const dictionary& transportProperties =
obr_.lookupObject<dictionary>("transportProperties");
dimensionedScalar nu(transportProperties.lookup("nu"));
const volVectorField& U = obr_.lookupObject<volVectorField>(UName_);
return -rho()*nu*dev(twoSymm(fvc::grad(U)));
}
else
{
FatalErrorIn("forces::devRhoReff()")
<< "No valid model for viscous stress calculation."
<< exit(FatalError);
return volSymmTensorField::null();
}
}
Foam::tmp<Foam::volScalarField> Foam::forces::rho() const
{
if (rhoName_ == "rhoInf")
{
const fvMesh& mesh = refCast<const fvMesh>(obr_);
return tmp<volScalarField>
(
new volScalarField
(
IOobject
(
"rho",
mesh.time().timeName(),
mesh
),
mesh,
dimensionedScalar("rho", dimDensity, rhoRef_)
)
);
}
else
{
return(obr_.lookupObject<volScalarField>(rhoName_));
}
}
Foam::scalar Foam::forces::rho(const volScalarField& p) const
{
if (p.dimensions() == dimPressure)
{
return 1.0;
}
else
{
if (rhoName_ != "rhoInf")
{
FatalErrorIn("forces::rho(const volScalarField& p)")
<< "Dynamic pressure is expected but kinematic is provided."
<< exit(FatalError);
}
return rhoRef_;
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::forces::forces
(
const word& name,
const objectRegistry& obr,
const dictionary& dict,
const bool loadFromFiles
)
:
name_(name),
obr_(obr),
active_(true),
log_(false),
patchSet_(),
pName_(word::null),
UName_(word::null),
rhoName_(word::null),
directForceDensity_(false),
fDName_(""),
rhoRef_(VGREAT),
CofR_(vector::zero),
forcesFilePtr_(NULL)
{
// Check if the available mesh is an fvMesh otherise deactivate
if (!isA<fvMesh>(obr_))
{
active_ = false;
WarningIn
(
"Foam::forces::forces"
"("
"const word&, "
"const objectRegistry&, "
"const dictionary&, "
"const bool"
")"
) << "No fvMesh available, deactivating."
<< endl;
}
read(dict);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::forces::~forces()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::forces::read(const dictionary& dict)
{
if (active_)
{
log_ = dict.lookupOrDefault<Switch>("log", false);
const fvMesh& mesh = refCast<const fvMesh>(obr_);
patchSet_ =
mesh.boundaryMesh().patchSet(wordList(dict.lookup("patches")));
dict.readIfPresent("directForceDensity", directForceDensity_);
if (directForceDensity_)
{
// Optional entry for fDName
fDName_ = dict.lookupOrDefault<word>("fDName", "fD");
// Check whether fDName exists, if not deactivate forces
if
(
!obr_.foundObject<volVectorField>(fDName_)
)
{
active_ = false;
WarningIn("void forces::read(const dictionary& dict)")
<< "Could not find " << fDName_ << " in database." << nl
<< " De-activating forces."
<< endl;
}
}
else
{
// Optional entries U and p
pName_ = dict.lookupOrDefault<word>("pName", "p");
UName_ = dict.lookupOrDefault<word>("UName", "U");
rhoName_ = dict.lookupOrDefault<word>("rhoName", "rho");
// Check whether UName, pName and rhoName exists,
// if not deactivate forces
if
(
!obr_.foundObject<volVectorField>(UName_)
|| !obr_.foundObject<volScalarField>(pName_)
|| (
rhoName_ != "rhoInf"
&& !obr_.foundObject<volScalarField>(rhoName_)
)
)
{
active_ = false;
WarningIn("void forces::read(const dictionary& dict)")
<< "Could not find " << UName_ << ", " << pName_;
if (rhoName_ != "rhoInf")
{
Info<< " or " << rhoName_;
}
Info<< " in database." << nl
<< " De-activating forces."
<< endl;
}
// Reference density needed for incompressible calculations
rhoRef_ = readScalar(dict.lookup("rhoInf"));
}
// Centre of rotation for moment calculations
CofR_ = dict.lookup("CofR");
}
}
void Foam::forces::makeFile()
{
// Create the forces file if not already created
if (forcesFilePtr_.empty())
{
if (debug)
{
Info<< "Creating forces file." << endl;
}
// File update
if (Pstream::master())
{
fileName forcesDir;
word startTimeName =
obr_.time().timeName(obr_.time().startTime().value());
if (Pstream::parRun())
{
// Put in undecomposed case (Note: gives problems for
// distributed data running)
forcesDir = obr_.time().path()/".."/name_/startTimeName;
}
else
{
forcesDir = obr_.time().path()/name_/startTimeName;
}
// Create directory if does not exist.
mkDir(forcesDir);
// Open new file at start up
forcesFilePtr_.reset(new OFstream(forcesDir/(type() + ".dat")));
// Add headers to output data
writeFileHeader();
}
}
}
void Foam::forces::writeFileHeader()
{
if (forcesFilePtr_.valid())
{
forcesFilePtr_()
<< "# Time" << tab
<< "forces(pressure, viscous) moment(pressure, viscous)"
<< endl;
}
}
void Foam::forces::execute()
{
// Do nothing - only valid on write
}
void Foam::forces::end()
{
// Do nothing - only valid on write
}
void Foam::forces::write()
{
if (active_)
{
// Create the forces file if not already created
makeFile();
forcesMoments fm = calcForcesMoment();
if (Pstream::master())
{
forcesFilePtr_() << obr_.time().value() << tab << fm << endl;
if (log_)
{
Info<< "forces output:" << nl
<< " forces(pressure, viscous)" << fm.first() << nl
<< " moment(pressure, viscous)" << fm.second() << nl
<< endl;
}
}
}
}
Foam::forces::forcesMoments Foam::forces::calcForcesMoment() const
{
forcesMoments fm
(
pressureViscous(vector::zero, vector::zero),
pressureViscous(vector::zero, vector::zero)
);
if (directForceDensity_)
{
const volVectorField& fD = obr_.lookupObject<volVectorField>(fDName_);
const fvMesh& mesh = fD.mesh();
const surfaceVectorField::GeometricBoundaryField& Sfb =
mesh.Sf().boundaryField();
forAllConstIter(labelHashSet, patchSet_, iter)
{
label patchi = iter.key();
vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;
scalarField sA = mag(Sfb[patchi]);
// Normal force = surfaceUnitNormal * (surfaceNormal & forceDensity)
vectorField fN =
Sfb[patchi]/sA
*(
Sfb[patchi] & fD.boundaryField()[patchi]
);
fm.first().first() += sum(fN);
fm.second().first() += sum(Md ^ fN);
// Tangential force (total force minus normal fN)
vectorField fT = sA*fD.boundaryField()[patchi] - fN;
fm.first().second() += sum(fT);
fm.second().second() += sum(Md ^ fT);
}
}
else
{
const volVectorField& U = obr_.lookupObject<volVectorField>(UName_);
const volScalarField& p = obr_.lookupObject<volScalarField>(pName_);
const fvMesh& mesh = U.mesh();
const surfaceVectorField::GeometricBoundaryField& Sfb =
mesh.Sf().boundaryField();
tmp<volSymmTensorField> tdevRhoReff = devRhoReff();
const volSymmTensorField::GeometricBoundaryField& devRhoReffb
= tdevRhoReff().boundaryField();
forAllConstIter(labelHashSet, patchSet_, iter)
{
label patchi = iter.key();
vectorField Md = mesh.C().boundaryField()[patchi] - CofR_;
vectorField pf = Sfb[patchi]*p.boundaryField()[patchi];
fm.first().first() += rho(p)*sum(pf);
fm.second().first() += rho(p)*sum(Md ^ pf);
vectorField vf = Sfb[patchi] & devRhoReffb[patchi];
fm.first().second() += sum(vf);
fm.second().second() += sum(Md ^ vf);
}
}
reduce(fm, sumOp());
return fm;
}
// ************************************************************************* //