Files
2008-04-15 18:56:58 +01:00

331 lines
10 KiB
C

/*
* Copyright 1997, Regents of the University of Minnesota
*
* pmetis.c
*
* This file contains the top level routines for the multilevel recursive
* bisection algorithm PMETIS.
*
* Started 7/24/97
* George
*
* $Id: pmetis.c,v 1.2 2002/08/10 06:29:33 karypis Exp $
*
*/
#include <metislib.h>
/*************************************************************************
* This function is the entry point for PMETIS
**************************************************************************/
void METIS_PartGraphRecursive(idxtype *nvtxs, idxtype *xadj, idxtype *adjncy, idxtype *vwgt,
idxtype *adjwgt, idxtype *wgtflag, idxtype *numflag, idxtype *nparts,
idxtype *options, idxtype *edgecut, idxtype *part)
{
idxtype i;
float *tpwgts;
tpwgts = gk_fmalloc(*nparts, "KMETIS: tpwgts");
for (i=0; i<*nparts; i++)
tpwgts[i] = 1.0/(1.0*(*nparts));
METIS_WPartGraphRecursive(nvtxs, xadj, adjncy, vwgt, adjwgt, wgtflag, numflag, nparts,
tpwgts, options, edgecut, part);
gk_free((void **)&tpwgts, LTERM);
}
/*************************************************************************
* This function is the entry point for PWMETIS that accepts exact weights
* for the target partitions
**************************************************************************/
void METIS_WPartGraphRecursive(idxtype *nvtxs, idxtype *xadj, idxtype *adjncy, idxtype *vwgt,
idxtype *adjwgt, idxtype *wgtflag, idxtype *numflag, idxtype *nparts,
float *tpwgts, idxtype *options, idxtype *edgecut, idxtype *part)
{
idxtype i, j;
GraphType graph;
CtrlType ctrl;
float *mytpwgts;
if (*numflag == 1)
Change2CNumbering(*nvtxs, xadj, adjncy);
SetUpGraph(&graph, OP_PMETIS, *nvtxs, 1, xadj, adjncy, vwgt, adjwgt, *wgtflag);
if (options[0] == 0) { /* Use the default parameters */
ctrl.CType = PMETIS_CTYPE;
ctrl.IType = PMETIS_ITYPE;
ctrl.RType = PMETIS_RTYPE;
ctrl.dbglvl = PMETIS_DBGLVL;
}
else {
ctrl.CType = options[OPTION_CTYPE];
ctrl.IType = options[OPTION_ITYPE];
ctrl.RType = options[OPTION_RTYPE];
ctrl.dbglvl = options[OPTION_DBGLVL];
}
ctrl.optype = OP_PMETIS;
ctrl.CoarsenTo = 20;
ctrl.maxvwgt = 1.5*(idxsum(*nvtxs, graph.vwgt, 1)/ctrl.CoarsenTo);
mytpwgts = gk_fmalloc(*nparts, "PWMETIS: mytpwgts");
for (i=0; i<*nparts; i++)
mytpwgts[i] = tpwgts[i];
InitRandom(-1);
AllocateWorkSpace(&ctrl, &graph, *nparts);
IFSET(ctrl.dbglvl, DBG_TIME, InitTimers(&ctrl));
IFSET(ctrl.dbglvl, DBG_TIME, gk_startcputimer(ctrl.TotalTmr));
*edgecut = MlevelRecursiveBisection(&ctrl, &graph, *nparts, part, mytpwgts, 1.000, 0);
IFSET(ctrl.dbglvl, DBG_TIME, gk_stopcputimer(ctrl.TotalTmr));
IFSET(ctrl.dbglvl, DBG_TIME, PrintTimers(&ctrl));
FreeWorkSpace(&ctrl, &graph);
gk_free((void **)&mytpwgts, LTERM);
if (*numflag == 1)
Change2FNumbering(*nvtxs, xadj, adjncy, part);
}
/*************************************************************************
* This function takes a graph and produces a bisection of it
**************************************************************************/
idxtype MlevelRecursiveBisection(CtrlType *ctrl, GraphType *graph,
idxtype nparts, idxtype *part, float *tpwgts, float ubfactor,
idxtype fpart)
{
idxtype i, j, nvtxs, cut, tvwgt, tpwgts2[2];
idxtype *label, *where;
GraphType lgraph, rgraph;
float wsum;
nvtxs = graph->nvtxs;
if (nvtxs == 0) {
mprintf("\t***Cannot bisect a graph with 0 vertices!\n\t***You are trying to partition a graph into too many parts!\n");
return 0;
}
/* Determine the weights of the partitions */
tvwgt = idxsum(nvtxs, graph->vwgt, 1);
tpwgts2[0] = tvwgt*gk_fsum(nparts/2, tpwgts, 1);
tpwgts2[1] = tvwgt-tpwgts2[0];
MlevelEdgeBisection(ctrl, graph, tpwgts2, ubfactor);
cut = graph->mincut;
/* mprintf("%5D %5D %5D [%5D %f]\n", tpwgts2[0], tpwgts2[1], cut, tvwgt, gk_fsum(nparts/2, tpwgts, 1));*/
label = graph->label;
where = graph->where;
for (i=0; i<nvtxs; i++)
part[label[i]] = where[i] + fpart;
if (nparts > 2) {
SplitGraphPart(ctrl, graph, &lgraph, &rgraph);
/* mprintf("%D %D\n", lgraph.nvtxs, rgraph.nvtxs); */
}
/* Free the memory of the top level graph */
FreeGraph(graph, 0);
/* Scale the fractions in the tpwgts according to the true weight */
wsum = gk_fsum(nparts/2, tpwgts, 1);
gk_fscale(nparts/2, 1.0/wsum, tpwgts, 1);
gk_fscale(nparts-nparts/2, 1.0/(1.0-wsum), tpwgts+nparts/2, 1);
/*
for (i=0; i<nparts; i++)
mprintf("%5.3f ", tpwgts[i]);
mprintf("[%5.3f]\n", wsum);
*/
/* Do the recursive call */
if (nparts > 3) {
cut += MlevelRecursiveBisection(ctrl, &lgraph, nparts/2, part, tpwgts, ubfactor, fpart);
cut += MlevelRecursiveBisection(ctrl, &rgraph, nparts-nparts/2, part, tpwgts+nparts/2, ubfactor, fpart+nparts/2);
}
else if (nparts == 3) {
cut += MlevelRecursiveBisection(ctrl, &rgraph, nparts-nparts/2, part, tpwgts+nparts/2, ubfactor, fpart+nparts/2);
FreeGraph(&lgraph, 0);
}
return cut;
}
/*************************************************************************
* This function performs multilevel bisection
**************************************************************************/
void MlevelEdgeBisection(CtrlType *ctrl, GraphType *graph, idxtype *tpwgts, float ubfactor)
{
GraphType *cgraph;
cgraph = Coarsen2Way(ctrl, graph);
Init2WayPartition(ctrl, cgraph, tpwgts, ubfactor);
Refine2Way(ctrl, graph, cgraph, tpwgts, ubfactor);
/*
IsConnectedSubdomain(ctrl, graph, 0);
IsConnectedSubdomain(ctrl, graph, 1);
*/
}
/*************************************************************************
* This function takes a graph and a bisection and splits it into two graphs.
**************************************************************************/
void SplitGraphPart(CtrlType *ctrl, GraphType *graph, GraphType *lgraph, GraphType *rgraph)
{
idxtype i, j, k, kk, l, istart, iend, mypart, nvtxs, ncon, snvtxs[2], snedges[2], sum;
idxtype *xadj, *vwgt, *adjncy, *adjwgt, *adjwgtsum, *label, *where, *bndptr;
idxtype *sxadj[2], *svwgt[2], *sadjncy[2], *sadjwgt[2], *sadjwgtsum[2], *slabel[2];
idxtype *rename;
idxtype *auxadjncy, *auxadjwgt;
float *nvwgt, *snvwgt[2], *npwgts;
IFSET(ctrl->dbglvl, DBG_TIME, gk_startcputimer(ctrl->SplitTmr));
nvtxs = graph->nvtxs;
ncon = graph->ncon;
xadj = graph->xadj;
vwgt = graph->vwgt;
nvwgt = graph->nvwgt;
adjncy = graph->adjncy;
adjwgt = graph->adjwgt;
adjwgtsum = graph->adjwgtsum;
label = graph->label;
where = graph->where;
bndptr = graph->bndptr;
npwgts = graph->npwgts;
ASSERT(bndptr != NULL);
rename = idxwspacemalloc(ctrl, nvtxs);
snvtxs[0] = snvtxs[1] = snedges[0] = snedges[1] = 0;
for (i=0; i<nvtxs; i++) {
k = where[i];
rename[i] = snvtxs[k]++;
snedges[k] += xadj[i+1]-xadj[i];
}
SetUpSplitGraph(graph, lgraph, snvtxs[0], snedges[0]);
sxadj[0] = lgraph->xadj;
svwgt[0] = lgraph->vwgt;
snvwgt[0] = lgraph->nvwgt;
sadjwgtsum[0] = lgraph->adjwgtsum;
sadjncy[0] = lgraph->adjncy;
sadjwgt[0] = lgraph->adjwgt;
slabel[0] = lgraph->label;
SetUpSplitGraph(graph, rgraph, snvtxs[1], snedges[1]);
sxadj[1] = rgraph->xadj;
svwgt[1] = rgraph->vwgt;
snvwgt[1] = rgraph->nvwgt;
sadjwgtsum[1] = rgraph->adjwgtsum;
sadjncy[1] = rgraph->adjncy;
sadjwgt[1] = rgraph->adjwgt;
slabel[1] = rgraph->label;
snvtxs[0] = snvtxs[1] = snedges[0] = snedges[1] = 0;
sxadj[0][0] = sxadj[1][0] = 0;
for (i=0; i<nvtxs; i++) {
mypart = where[i];
sum = adjwgtsum[i];
istart = xadj[i];
iend = xadj[i+1];
if (bndptr[i] == -1) { /* This is an interior vertex */
auxadjncy = sadjncy[mypart] + snedges[mypart] - istart;
auxadjwgt = sadjwgt[mypart] + snedges[mypart] - istart;
for(j=istart; j<iend; j++) {
auxadjncy[j] = adjncy[j];
auxadjwgt[j] = adjwgt[j];
}
snedges[mypart] += iend-istart;
}
else {
auxadjncy = sadjncy[mypart];
auxadjwgt = sadjwgt[mypart];
l = snedges[mypart];
for (j=istart; j<iend; j++) {
k = adjncy[j];
if (where[k] == mypart) {
auxadjncy[l] = k;
auxadjwgt[l++] = adjwgt[j];
}
else {
sum -= adjwgt[j];
}
}
snedges[mypart] = l;
}
if (ncon == 1)
svwgt[mypart][snvtxs[mypart]] = vwgt[i];
else {
for (kk=0; kk<ncon; kk++)
snvwgt[mypart][snvtxs[mypart]*ncon+kk] = nvwgt[i*ncon+kk]/npwgts[mypart*ncon+kk];
}
sadjwgtsum[mypart][snvtxs[mypart]] = sum;
slabel[mypart][snvtxs[mypart]] = label[i];
sxadj[mypart][++snvtxs[mypart]] = snedges[mypart];
}
for (mypart=0; mypart<2; mypart++) {
iend = sxadj[mypart][snvtxs[mypart]];
auxadjncy = sadjncy[mypart];
for (i=0; i<iend; i++)
auxadjncy[i] = rename[auxadjncy[i]];
}
lgraph->nedges = snedges[0];
rgraph->nedges = snedges[1];
IFSET(ctrl->dbglvl, DBG_TIME, gk_stopcputimer(ctrl->SplitTmr));
idxwspacefree(ctrl, nvtxs);
}
/*************************************************************************
* Setup the various arrays for the splitted graph
**************************************************************************/
void SetUpSplitGraph(GraphType *graph, GraphType *sgraph, idxtype snvtxs, idxtype snedges)
{
InitGraph(sgraph);
sgraph->nvtxs = snvtxs;
sgraph->nedges = snedges;
sgraph->ncon = graph->ncon;
/* Allocate memory for the splitted graph */
sgraph->xadj = idxmalloc(snvtxs+1, "SetUpSplitGraph: xadj");
sgraph->adjwgtsum = idxmalloc(snvtxs, "SetUpSplitGraph: adjwgtsum");
sgraph->cmap = idxmalloc(snvtxs, "SetUpSplitGraph: cmap");
sgraph->adjncy = idxmalloc(snedges, "SetUpSplitGraph: adjncy");
sgraph->adjwgt = idxmalloc(snedges, "SetUpSplitGraph: adjwgt");
sgraph->label = idxmalloc(snvtxs, "SetUpSplitGraph: label");
if (graph->ncon == 1)
sgraph->vwgt = idxmalloc(snvtxs, "SetUpSplitGraph: vwgt");
else
sgraph->nvwgt = gk_fmalloc(graph->ncon*snvtxs, "SetUpSplitGraph: nvwgt");
}