Files
2008-04-15 18:56:58 +01:00

765 lines
22 KiB
C

/*
* Copyright 1997, Regents of the University of Minnesota
*
* ometis.c
*
* This file contains the top level routines for the multilevel recursive
* bisection algorithm PMETIS.
*
* Started 7/24/97
* George
*
* $Id: ometis.c,v 1.2 2003/07/31 06:14:01 karypis Exp $
*
*/
#include <metis.h>
/*************************************************************************
* This function is the entry point for OEMETIS
**************************************************************************/
void METIS_EdgeND(int *nvtxs, idxtype *xadj, idxtype *adjncy, int *numflag, int *options,
idxtype *perm, idxtype *iperm)
{
int i, j;
GraphType graph;
CtrlType ctrl;
if (*numflag == 1)
Change2CNumbering(*nvtxs, xadj, adjncy);
SetUpGraph(&graph, OP_OEMETIS, *nvtxs, 1, xadj, adjncy, NULL, NULL, 0);
if (options[0] == 0) { /* Use the default parameters */
ctrl.CType = OEMETIS_CTYPE;
ctrl.IType = OEMETIS_ITYPE;
ctrl.RType = OEMETIS_RTYPE;
ctrl.dbglvl = OEMETIS_DBGLVL;
}
else {
ctrl.CType = options[OPTION_CTYPE];
ctrl.IType = options[OPTION_ITYPE];
ctrl.RType = options[OPTION_RTYPE];
ctrl.dbglvl = options[OPTION_DBGLVL];
}
ctrl.oflags = 0;
ctrl.pfactor = -1;
ctrl.nseps = 1;
ctrl.optype = OP_OEMETIS;
ctrl.CoarsenTo = 20;
ctrl.maxvwgt = 1.5*(idxsum(*nvtxs, graph.vwgt)/ctrl.CoarsenTo);
InitRandom(-1);
AllocateWorkSpace(&ctrl, &graph, 2);
IFSET(ctrl.dbglvl, DBG_TIME, InitTimers(&ctrl));
IFSET(ctrl.dbglvl, DBG_TIME, starttimer(ctrl.TotalTmr));
MlevelNestedDissection(&ctrl, &graph, iperm, ORDER_UNBALANCE_FRACTION, *nvtxs);
IFSET(ctrl.dbglvl, DBG_TIME, stoptimer(ctrl.TotalTmr));
IFSET(ctrl.dbglvl, DBG_TIME, PrintTimers(&ctrl));
for (i=0; i<*nvtxs; i++)
perm[iperm[i]] = i;
FreeWorkSpace(&ctrl, &graph);
if (*numflag == 1)
Change2FNumberingOrder(*nvtxs, xadj, adjncy, perm, iperm);
}
/*************************************************************************
* This function is the entry point for ONCMETIS
**************************************************************************/
void METIS_NodeND(int *nvtxs, idxtype *xadj, idxtype *adjncy, int *numflag, int *options,
idxtype *perm, idxtype *iperm)
{
int i, ii, j, l, wflag, nflag;
GraphType graph;
CtrlType ctrl;
idxtype *cptr, *cind, *piperm;
if (*numflag == 1)
Change2CNumbering(*nvtxs, xadj, adjncy);
if (options[0] == 0) { /* Use the default parameters */
ctrl.CType = ONMETIS_CTYPE;
ctrl.IType = ONMETIS_ITYPE;
ctrl.RType = ONMETIS_RTYPE;
ctrl.dbglvl = ONMETIS_DBGLVL;
ctrl.oflags = ONMETIS_OFLAGS;
ctrl.pfactor = ONMETIS_PFACTOR;
ctrl.nseps = ONMETIS_NSEPS;
}
else {
ctrl.CType = options[OPTION_CTYPE];
ctrl.IType = options[OPTION_ITYPE];
ctrl.RType = options[OPTION_RTYPE];
ctrl.dbglvl = options[OPTION_DBGLVL];
ctrl.oflags = options[OPTION_OFLAGS];
ctrl.pfactor = options[OPTION_PFACTOR];
ctrl.nseps = options[OPTION_NSEPS];
}
if (ctrl.nseps < 1)
ctrl.nseps = 1;
ctrl.optype = OP_ONMETIS;
ctrl.CoarsenTo = 100;
IFSET(ctrl.dbglvl, DBG_TIME, InitTimers(&ctrl));
IFSET(ctrl.dbglvl, DBG_TIME, starttimer(ctrl.TotalTmr));
InitRandom(-1);
if (ctrl.pfactor > 0) {
/*============================================================
* Prune the dense columns
==============================================================*/
piperm = idxmalloc(*nvtxs, "ONMETIS: piperm");
PruneGraph(&ctrl, &graph, *nvtxs, xadj, adjncy, piperm, (float)(0.1*ctrl.pfactor));
}
else if (ctrl.oflags&OFLAG_COMPRESS) {
/*============================================================
* Compress the graph
==============================================================*/
cptr = idxmalloc(*nvtxs+1, "ONMETIS: cptr");
cind = idxmalloc(*nvtxs, "ONMETIS: cind");
CompressGraph(&ctrl, &graph, *nvtxs, xadj, adjncy, cptr, cind);
if (graph.nvtxs >= COMPRESSION_FRACTION*(*nvtxs)) {
ctrl.oflags--; /* We actually performed no compression */
GKfree(&cptr, &cind, LTERM);
}
else if (2*graph.nvtxs < *nvtxs && ctrl.nseps == 1)
ctrl.nseps = 2;
}
else {
SetUpGraph(&graph, OP_ONMETIS, *nvtxs, 1, xadj, adjncy, NULL, NULL, 0);
}
/*=============================================================
* Do the nested dissection ordering
--=============================================================*/
ctrl.maxvwgt = 1.5*(idxsum(graph.nvtxs, graph.vwgt)/ctrl.CoarsenTo);
AllocateWorkSpace(&ctrl, &graph, 2);
if (ctrl.oflags&OFLAG_CCMP)
MlevelNestedDissectionCC(&ctrl, &graph, iperm, ORDER_UNBALANCE_FRACTION, graph.nvtxs);
else
MlevelNestedDissection(&ctrl, &graph, iperm, ORDER_UNBALANCE_FRACTION, graph.nvtxs);
FreeWorkSpace(&ctrl, &graph);
if (ctrl.pfactor > 0) { /* Order any prunned vertices */
if (graph.nvtxs < *nvtxs) {
idxcopy(graph.nvtxs, iperm, perm); /* Use perm as an auxiliary array */
for (i=0; i<graph.nvtxs; i++)
iperm[piperm[i]] = perm[i];
for (i=graph.nvtxs; i<*nvtxs; i++)
iperm[piperm[i]] = i;
}
GKfree(&piperm, LTERM);
}
else if (ctrl.oflags&OFLAG_COMPRESS) { /* Uncompress the ordering */
if (graph.nvtxs < COMPRESSION_FRACTION*(*nvtxs)) {
/* construct perm from iperm */
for (i=0; i<graph.nvtxs; i++)
perm[iperm[i]] = i;
for (l=ii=0; ii<graph.nvtxs; ii++) {
i = perm[ii];
for (j=cptr[i]; j<cptr[i+1]; j++)
iperm[cind[j]] = l++;
}
}
GKfree(&cptr, &cind, LTERM);
}
for (i=0; i<*nvtxs; i++)
perm[iperm[i]] = i;
IFSET(ctrl.dbglvl, DBG_TIME, stoptimer(ctrl.TotalTmr));
IFSET(ctrl.dbglvl, DBG_TIME, PrintTimers(&ctrl));
if (*numflag == 1)
Change2FNumberingOrder(*nvtxs, xadj, adjncy, perm, iperm);
}
/*************************************************************************
* This function is the entry point for ONWMETIS. It requires weights on the
* vertices. It is for the case that the matrix has been pre-compressed.
**************************************************************************/
void METIS_NodeWND(int *nvtxs, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, int *numflag,
int *options, idxtype *perm, idxtype *iperm)
{
int i, j, tvwgt;
GraphType graph;
CtrlType ctrl;
if (*numflag == 1)
Change2CNumbering(*nvtxs, xadj, adjncy);
SetUpGraph(&graph, OP_ONMETIS, *nvtxs, 1, xadj, adjncy, vwgt, NULL, 2);
if (options[0] == 0) { /* Use the default parameters */
ctrl.CType = ONMETIS_CTYPE;
ctrl.IType = ONMETIS_ITYPE;
ctrl.RType = ONMETIS_RTYPE;
ctrl.dbglvl = ONMETIS_DBGLVL;
}
else {
ctrl.CType = options[OPTION_CTYPE];
ctrl.IType = options[OPTION_ITYPE];
ctrl.RType = options[OPTION_RTYPE];
ctrl.dbglvl = options[OPTION_DBGLVL];
}
ctrl.oflags = OFLAG_COMPRESS;
ctrl.pfactor = 0;
ctrl.nseps = 2;
ctrl.optype = OP_ONMETIS;
ctrl.CoarsenTo = 100;
ctrl.maxvwgt = 1.5*(idxsum(*nvtxs, graph.vwgt)/ctrl.CoarsenTo);
InitRandom(-1);
AllocateWorkSpace(&ctrl, &graph, 2);
IFSET(ctrl.dbglvl, DBG_TIME, InitTimers(&ctrl));
IFSET(ctrl.dbglvl, DBG_TIME, starttimer(ctrl.TotalTmr));
MlevelNestedDissection(&ctrl, &graph, iperm, ORDER_UNBALANCE_FRACTION, *nvtxs);
IFSET(ctrl.dbglvl, DBG_TIME, stoptimer(ctrl.TotalTmr));
IFSET(ctrl.dbglvl, DBG_TIME, PrintTimers(&ctrl));
for (i=0; i<*nvtxs; i++)
perm[iperm[i]] = i;
FreeWorkSpace(&ctrl, &graph);
if (*numflag == 1)
Change2FNumberingOrder(*nvtxs, xadj, adjncy, perm, iperm);
}
/*************************************************************************
* This function takes a graph and produces a bisection of it
**************************************************************************/
void MlevelNestedDissection(CtrlType *ctrl, GraphType *graph, idxtype *order, float ubfactor, int lastvtx)
{
int i, j, nvtxs, nbnd, tvwgt, tpwgts2[2];
idxtype *label, *bndind;
GraphType lgraph, rgraph;
nvtxs = graph->nvtxs;
/* Determine the weights of the partitions */
tvwgt = idxsum(nvtxs, graph->vwgt);
tpwgts2[0] = tvwgt/2;
tpwgts2[1] = tvwgt-tpwgts2[0];
switch (ctrl->optype) {
case OP_OEMETIS:
MlevelEdgeBisection(ctrl, graph, tpwgts2, ubfactor);
IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->SepTmr));
ConstructMinCoverSeparator(ctrl, graph, ubfactor);
IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->SepTmr));
break;
case OP_ONMETIS:
MlevelNodeBisectionMultiple(ctrl, graph, tpwgts2, ubfactor);
IFSET(ctrl->dbglvl, DBG_SEPINFO, printf("Nvtxs: %6d, [%6d %6d %6d]\n", graph->nvtxs, graph->pwgts[0], graph->pwgts[1], graph->pwgts[2]));
break;
}
/* Order the nodes in the separator */
nbnd = graph->nbnd;
bndind = graph->bndind;
label = graph->label;
for (i=0; i<nbnd; i++)
order[label[bndind[i]]] = --lastvtx;
SplitGraphOrder(ctrl, graph, &lgraph, &rgraph);
/* Free the memory of the top level graph */
GKfree(&graph->gdata, &graph->rdata, &graph->label, LTERM);
if (rgraph.nvtxs > MMDSWITCH)
MlevelNestedDissection(ctrl, &rgraph, order, ubfactor, lastvtx);
else {
MMDOrder(ctrl, &rgraph, order, lastvtx);
GKfree(&rgraph.gdata, &rgraph.rdata, &rgraph.label, LTERM);
}
if (lgraph.nvtxs > MMDSWITCH)
MlevelNestedDissection(ctrl, &lgraph, order, ubfactor, lastvtx-rgraph.nvtxs);
else {
MMDOrder(ctrl, &lgraph, order, lastvtx-rgraph.nvtxs);
GKfree(&lgraph.gdata, &lgraph.rdata, &lgraph.label, LTERM);
}
}
/*************************************************************************
* This function takes a graph and produces a bisection of it
**************************************************************************/
void MlevelNestedDissectionCC(CtrlType *ctrl, GraphType *graph, idxtype *order, float ubfactor, int lastvtx)
{
int i, j, nvtxs, nbnd, tvwgt, tpwgts2[2], nsgraphs, ncmps, rnvtxs;
idxtype *label, *bndind;
idxtype *cptr, *cind;
GraphType *sgraphs;
nvtxs = graph->nvtxs;
/* Determine the weights of the partitions */
tvwgt = idxsum(nvtxs, graph->vwgt);
tpwgts2[0] = tvwgt/2;
tpwgts2[1] = tvwgt-tpwgts2[0];
MlevelNodeBisectionMultiple(ctrl, graph, tpwgts2, ubfactor);
IFSET(ctrl->dbglvl, DBG_SEPINFO, printf("Nvtxs: %6d, [%6d %6d %6d]\n", graph->nvtxs, graph->pwgts[0], graph->pwgts[1], graph->pwgts[2]));
/* Order the nodes in the separator */
nbnd = graph->nbnd;
bndind = graph->bndind;
label = graph->label;
for (i=0; i<nbnd; i++)
order[label[bndind[i]]] = --lastvtx;
cptr = idxmalloc(nvtxs+1, "MlevelNestedDissectionCC: cptr");
cind = idxmalloc(nvtxs, "MlevelNestedDissectionCC: cind");
ncmps = FindComponents(ctrl, graph, cptr, cind);
/*
if (ncmps > 2)
printf("[%5d] has %3d components\n", nvtxs, ncmps);
*/
sgraphs = (GraphType *)GKmalloc(ncmps*sizeof(GraphType), "MlevelNestedDissectionCC: sgraphs");
nsgraphs = SplitGraphOrderCC(ctrl, graph, sgraphs, ncmps, cptr, cind);
GKfree(&cptr, &cind, LTERM);
/* Free the memory of the top level graph */
GKfree(&graph->gdata, &graph->rdata, &graph->label, LTERM);
/* Go and process the subgraphs */
for (rnvtxs=i=0; i<nsgraphs; i++) {
if (sgraphs[i].adjwgt == NULL) {
MMDOrder(ctrl, sgraphs+i, order, lastvtx-rnvtxs);
GKfree(&sgraphs[i].gdata, &sgraphs[i].label, LTERM);
}
else {
MlevelNestedDissectionCC(ctrl, sgraphs+i, order, ubfactor, lastvtx-rnvtxs);
}
rnvtxs += sgraphs[i].nvtxs;
}
free(sgraphs);
}
/*************************************************************************
* This function performs multilevel bisection. It performs multiple
* bisections and selects the best.
**************************************************************************/
void MlevelNodeBisectionMultiple(CtrlType *ctrl, GraphType *graph, int *tpwgts, float ubfactor)
{
int i, nvtxs, cnvtxs, mincut, tmp;
GraphType *cgraph;
idxtype *bestwhere;
if (ctrl->nseps == 1 || graph->nvtxs < (ctrl->oflags&OFLAG_COMPRESS ? 1000 : 2000)) {
MlevelNodeBisection(ctrl, graph, tpwgts, ubfactor);
return;
}
nvtxs = graph->nvtxs;
if (ctrl->oflags&OFLAG_COMPRESS) { /* Multiple separators at the original graph */
bestwhere = idxmalloc(nvtxs, "MlevelNodeBisection2: bestwhere");
mincut = nvtxs;
for (i=ctrl->nseps; i>0; i--) {
MlevelNodeBisection(ctrl, graph, tpwgts, ubfactor);
/* printf("%5d ", cgraph->mincut); */
if (graph->mincut < mincut) {
mincut = graph->mincut;
idxcopy(nvtxs, graph->where, bestwhere);
}
GKfree(&graph->rdata, LTERM);
if (mincut == 0)
break;
}
/* printf("[%5d]\n", mincut); */
Allocate2WayNodePartitionMemory(ctrl, graph);
idxcopy(nvtxs, bestwhere, graph->where);
free(bestwhere);
Compute2WayNodePartitionParams(ctrl, graph);
}
else { /* Coarsen it a bit */
ctrl->CoarsenTo = nvtxs-1;
cgraph = Coarsen2Way(ctrl, graph);
cnvtxs = cgraph->nvtxs;
bestwhere = idxmalloc(cnvtxs, "MlevelNodeBisection2: bestwhere");
mincut = nvtxs;
for (i=ctrl->nseps; i>0; i--) {
ctrl->CType += 20; /* This is a hack. Look at coarsen.c */
MlevelNodeBisection(ctrl, cgraph, tpwgts, ubfactor);
/* printf("%5d ", cgraph->mincut); */
if (cgraph->mincut < mincut) {
mincut = cgraph->mincut;
idxcopy(cnvtxs, cgraph->where, bestwhere);
}
GKfree(&cgraph->rdata, LTERM);
if (mincut == 0)
break;
}
/* printf("[%5d]\n", mincut); */
Allocate2WayNodePartitionMemory(ctrl, cgraph);
idxcopy(cnvtxs, bestwhere, cgraph->where);
free(bestwhere);
Compute2WayNodePartitionParams(ctrl, cgraph);
Refine2WayNode(ctrl, graph, cgraph, ubfactor);
}
}
/*************************************************************************
* This function performs multilevel bisection
**************************************************************************/
void MlevelNodeBisection(CtrlType *ctrl, GraphType *graph, int *tpwgts, float ubfactor)
{
GraphType *cgraph;
ctrl->CoarsenTo = graph->nvtxs/8;
if (ctrl->CoarsenTo > 100)
ctrl->CoarsenTo = 100;
else if (ctrl->CoarsenTo < 40)
ctrl->CoarsenTo = 40;
ctrl->maxvwgt = 1.5*((tpwgts[0]+tpwgts[1])/ctrl->CoarsenTo);
cgraph = Coarsen2Way(ctrl, graph);
switch (ctrl->IType) {
case IPART_GGPKL:
Init2WayPartition(ctrl, cgraph, tpwgts, ubfactor);
IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->SepTmr));
Compute2WayPartitionParams(ctrl, cgraph);
ConstructSeparator(ctrl, cgraph, ubfactor);
IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->SepTmr));
break;
case IPART_GGPKLNODE:
InitSeparator(ctrl, cgraph, ubfactor);
break;
}
Refine2WayNode(ctrl, graph, cgraph, ubfactor);
}
/*************************************************************************
* This function takes a graph and a bisection and splits it into two graphs.
* This function relies on the fact that adjwgt is all equal to 1.
**************************************************************************/
void SplitGraphOrder(CtrlType *ctrl, GraphType *graph, GraphType *lgraph, GraphType *rgraph)
{
int i, ii, j, k, l, istart, iend, mypart, nvtxs, snvtxs[3], snedges[3];
idxtype *xadj, *vwgt, *adjncy, *adjwgt, *adjwgtsum, *label, *where, *bndptr, *bndind;
idxtype *sxadj[2], *svwgt[2], *sadjncy[2], *sadjwgt[2], *sadjwgtsum[2], *slabel[2];
idxtype *rename;
idxtype *auxadjncy, *auxadjwgt;
IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->SplitTmr));
nvtxs = graph->nvtxs;
xadj = graph->xadj;
vwgt = graph->vwgt;
adjncy = graph->adjncy;
adjwgt = graph->adjwgt;
adjwgtsum = graph->adjwgtsum;
label = graph->label;
where = graph->where;
bndptr = graph->bndptr;
bndind = graph->bndind;
ASSERT(bndptr != NULL);
rename = idxwspacemalloc(ctrl, nvtxs);
snvtxs[0] = snvtxs[1] = snvtxs[2] = snedges[0] = snedges[1] = snedges[2] = 0;
for (i=0; i<nvtxs; i++) {
k = where[i];
rename[i] = snvtxs[k]++;
snedges[k] += xadj[i+1]-xadj[i];
}
SetUpSplitGraph(graph, lgraph, snvtxs[0], snedges[0]);
sxadj[0] = lgraph->xadj;
svwgt[0] = lgraph->vwgt;
sadjwgtsum[0] = lgraph->adjwgtsum;
sadjncy[0] = lgraph->adjncy;
sadjwgt[0] = lgraph->adjwgt;
slabel[0] = lgraph->label;
SetUpSplitGraph(graph, rgraph, snvtxs[1], snedges[1]);
sxadj[1] = rgraph->xadj;
svwgt[1] = rgraph->vwgt;
sadjwgtsum[1] = rgraph->adjwgtsum;
sadjncy[1] = rgraph->adjncy;
sadjwgt[1] = rgraph->adjwgt;
slabel[1] = rgraph->label;
/* Go and use bndptr to also mark the boundary nodes in the two partitions */
for (ii=0; ii<graph->nbnd; ii++) {
i = bndind[ii];
for (j=xadj[i]; j<xadj[i+1]; j++)
bndptr[adjncy[j]] = 1;
}
snvtxs[0] = snvtxs[1] = snedges[0] = snedges[1] = 0;
sxadj[0][0] = sxadj[1][0] = 0;
for (i=0; i<nvtxs; i++) {
if ((mypart = where[i]) == 2)
continue;
istart = xadj[i];
iend = xadj[i+1];
if (bndptr[i] == -1) { /* This is an interior vertex */
auxadjncy = sadjncy[mypart] + snedges[mypart] - istart;
for(j=istart; j<iend; j++)
auxadjncy[j] = adjncy[j];
snedges[mypart] += iend-istart;
}
else {
auxadjncy = sadjncy[mypart];
l = snedges[mypart];
for (j=istart; j<iend; j++) {
k = adjncy[j];
if (where[k] == mypart)
auxadjncy[l++] = k;
}
snedges[mypart] = l;
}
svwgt[mypart][snvtxs[mypart]] = vwgt[i];
sadjwgtsum[mypart][snvtxs[mypart]] = snedges[mypart]-sxadj[mypart][snvtxs[mypart]];
slabel[mypart][snvtxs[mypart]] = label[i];
sxadj[mypart][++snvtxs[mypart]] = snedges[mypart];
}
for (mypart=0; mypart<2; mypart++) {
iend = snedges[mypart];
idxset(iend, 1, sadjwgt[mypart]);
auxadjncy = sadjncy[mypart];
for (i=0; i<iend; i++)
auxadjncy[i] = rename[auxadjncy[i]];
}
lgraph->nvtxs = snvtxs[0];
lgraph->nedges = snedges[0];
rgraph->nvtxs = snvtxs[1];
rgraph->nedges = snedges[1];
IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->SplitTmr));
idxwspacefree(ctrl, nvtxs);
}
/*************************************************************************
* This function uses MMD to order the graph. The vertices are numbered
* from lastvtx downwards
**************************************************************************/
void MMDOrder(CtrlType *ctrl, GraphType *graph, idxtype *order, int lastvtx)
{
int i, j, k, nvtxs, nofsub, firstvtx;
idxtype *xadj, *adjncy, *label;
idxtype *perm, *iperm, *head, *qsize, *list, *marker;
nvtxs = graph->nvtxs;
xadj = graph->xadj;
adjncy = graph->adjncy;
/* Relabel the vertices so that it starts from 1 */
k = xadj[nvtxs];
for (i=0; i<k; i++)
adjncy[i]++;
for (i=0; i<nvtxs+1; i++)
xadj[i]++;
perm = idxmalloc(6*(nvtxs+5), "MMDOrder: perm");
iperm = perm + nvtxs + 5;
head = iperm + nvtxs + 5;
qsize = head + nvtxs + 5;
list = qsize + nvtxs + 5;
marker = list + nvtxs + 5;
genmmd(nvtxs, xadj, adjncy, iperm, perm, 1, head, qsize, list, marker, MAXIDX, &nofsub);
label = graph->label;
firstvtx = lastvtx-nvtxs;
for (i=0; i<nvtxs; i++)
order[label[i]] = firstvtx+iperm[i]-1;
free(perm);
/* Relabel the vertices so that it starts from 0 */
for (i=0; i<nvtxs+1; i++)
xadj[i]--;
k = xadj[nvtxs];
for (i=0; i<k; i++)
adjncy[i]--;
}
/*************************************************************************
* This function takes a graph and a bisection and splits it into two graphs.
* It relies on the fact that adjwgt is all set to 1.
**************************************************************************/
int SplitGraphOrderCC(CtrlType *ctrl, GraphType *graph, GraphType *sgraphs, int ncmps, idxtype *cptr, idxtype *cind)
{
int i, ii, iii, j, k, l, istart, iend, mypart, nvtxs, snvtxs, snedges;
idxtype *xadj, *vwgt, *adjncy, *adjwgt, *adjwgtsum, *label, *where, *bndptr, *bndind;
idxtype *sxadj, *svwgt, *sadjncy, *sadjwgt, *sadjwgtsum, *slabel;
idxtype *rename;
idxtype *auxadjncy, *auxadjwgt;
IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->SplitTmr));
nvtxs = graph->nvtxs;
xadj = graph->xadj;
vwgt = graph->vwgt;
adjncy = graph->adjncy;
adjwgt = graph->adjwgt;
adjwgtsum = graph->adjwgtsum;
label = graph->label;
where = graph->where;
bndptr = graph->bndptr;
bndind = graph->bndind;
ASSERT(bndptr != NULL);
/* Go and use bndptr to also mark the boundary nodes in the two partitions */
for (ii=0; ii<graph->nbnd; ii++) {
i = bndind[ii];
for (j=xadj[i]; j<xadj[i+1]; j++)
bndptr[adjncy[j]] = 1;
}
rename = idxwspacemalloc(ctrl, nvtxs);
/* Go and split the graph a component at a time */
for (iii=0; iii<ncmps; iii++) {
RandomPermute(cptr[iii+1]-cptr[iii], cind+cptr[iii], 0);
snvtxs = snedges = 0;
for (j=cptr[iii]; j<cptr[iii+1]; j++) {
i = cind[j];
rename[i] = snvtxs++;
snedges += xadj[i+1]-xadj[i];
}
SetUpSplitGraph(graph, sgraphs+iii, snvtxs, snedges);
sxadj = sgraphs[iii].xadj;
svwgt = sgraphs[iii].vwgt;
sadjwgtsum = sgraphs[iii].adjwgtsum;
sadjncy = sgraphs[iii].adjncy;
sadjwgt = sgraphs[iii].adjwgt;
slabel = sgraphs[iii].label;
snvtxs = snedges = sxadj[0] = 0;
for (ii=cptr[iii]; ii<cptr[iii+1]; ii++) {
i = cind[ii];
istart = xadj[i];
iend = xadj[i+1];
if (bndptr[i] == -1) { /* This is an interior vertex */
auxadjncy = sadjncy + snedges - istart;
auxadjwgt = sadjwgt + snedges - istart;
for(j=istart; j<iend; j++)
auxadjncy[j] = adjncy[j];
snedges += iend-istart;
}
else {
l = snedges;
for (j=istart; j<iend; j++) {
k = adjncy[j];
if (where[k] != 2)
sadjncy[l++] = k;
}
snedges = l;
}
svwgt[snvtxs] = vwgt[i];
sadjwgtsum[snvtxs] = snedges-sxadj[snvtxs];
slabel[snvtxs] = label[i];
sxadj[++snvtxs] = snedges;
}
idxset(snedges, 1, sadjwgt);
for (i=0; i<snedges; i++)
sadjncy[i] = rename[sadjncy[i]];
sgraphs[iii].nvtxs = snvtxs;
sgraphs[iii].nedges = snedges;
sgraphs[iii].ncon = 1;
if (snvtxs < MMDSWITCH)
sgraphs[iii].adjwgt = NULL; /* A marker to call MMD on the driver */
}
IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->SplitTmr));
idxwspacefree(ctrl, nvtxs);
return ncmps;
}