Files
openfoam/src/mesh/autoMesh/autoHexMesh/shellSurfaces/shellSurfaces.C

862 lines
24 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation | Copyright (C) 2015 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "shellSurfaces.H"
#include "searchableSurface.H"
#include "boundBox.H"
#include "triSurfaceMesh.H"
#include "refinementSurfaces.H"
#include "searchableSurfaces.H"
#include "orientedSurface.H"
#include "pointIndexHit.H"
#include "volumeType.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
template<>
const char*
NamedEnum<shellSurfaces::refineMode, 3>::
names[] =
{
"inside",
"outside",
"distance"
};
const NamedEnum<shellSurfaces::refineMode, 3> shellSurfaces::refineModeNames_;
} // End namespace Foam
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::shellSurfaces::setAndCheckLevels
(
const label shellI,
const List<Tuple2<scalar, label> >& distLevels
)
{
if (modes_[shellI] != DISTANCE && distLevels.size() != 1)
{
FatalErrorIn
(
"shellSurfaces::shellSurfaces"
"(const searchableSurfaces&, const dictionary&)"
) << "For refinement mode "
<< refineModeNames_[modes_[shellI]]
<< " specify only one distance+level."
<< " (its distance gets discarded)"
<< exit(FatalError);
}
// Extract information into separate distance and level
distances_[shellI].setSize(distLevels.size());
levels_[shellI].setSize(distLevels.size());
forAll(distLevels, j)
{
distances_[shellI][j] = distLevels[j].first();
levels_[shellI][j] = distLevels[j].second();
// Check in incremental order
if (j > 0)
{
if
(
(distances_[shellI][j] <= distances_[shellI][j-1])
|| (levels_[shellI][j] > levels_[shellI][j-1])
)
{
FatalErrorIn
(
"shellSurfaces::shellSurfaces"
"(const searchableSurfaces&, const dictionary&)"
) << "For refinement mode "
<< refineModeNames_[modes_[shellI]]
<< " : Refinement should be specified in order"
<< " of increasing distance"
<< " (and decreasing refinement level)." << endl
<< "Distance:" << distances_[shellI][j]
<< " refinementLevel:" << levels_[shellI][j]
<< exit(FatalError);
}
}
}
const searchableSurface& shell = allGeometry_[shells_[shellI]];
if (modes_[shellI] == DISTANCE)
{
Info<< "Refinement level according to distance to "
<< shell.name() << endl;
forAll(levels_[shellI], j)
{
Info<< " level " << levels_[shellI][j]
<< " for all cells within " << distances_[shellI][j]
<< " metre." << endl;
}
}
else
{
if (!shell.hasVolumeType())
{
FatalErrorIn
(
"shellSurfaces::shellSurfaces"
"(const searchableSurfaces&"
", const PtrList<dictionary>&)"
) << "Shell " << shell.name()
<< " does not support testing for "
<< refineModeNames_[modes_[shellI]] << endl
<< "Probably it is not closed."
<< exit(FatalError);
}
if (modes_[shellI] == INSIDE)
{
Info<< "Refinement level " << levels_[shellI][0]
<< " for all cells inside " << shell.name() << endl;
}
else
{
Info<< "Refinement level " << levels_[shellI][0]
<< " for all cells outside " << shell.name() << endl;
}
}
}
void Foam::shellSurfaces::checkGapLevels
(
const dictionary& shellDict,
const label shellI,
const List<FixedList<label, 3> >& levels
)
{
const searchableSurface& shell = allGeometry_[shells_[shellI]];
forAll(levels, regionI)
{
const FixedList<label, 3>& info = levels[regionI];
if (info[2] > 0)
{
if (modes_[shellI] == DISTANCE)
{
FatalIOErrorIn
(
"shellSurfaces::shellSurfaces(..)",
shellDict
) << "'gapLevel' specification cannot be used with mode "
<< refineModeNames_[DISTANCE]
<< " for shell " << shell.name()
<< exit(FatalIOError);
}
}
}
// Hardcode for region 0
if (levels[0][0] > 0)
{
Info<< "Refinement level up to " << levels[0][2]
<< " for all cells in gaps for shell "
<< shell.name() << endl;
}
}
// Specifically orient triSurfaces using a calculated point outside.
// Done since quite often triSurfaces not of consistent orientation which
// is (currently) necessary for sideness calculation
void Foam::shellSurfaces::orient()
{
// Determine outside point.
boundBox overallBb = boundBox::invertedBox;
bool hasSurface = false;
forAll(shells_, shellI)
{
const searchableSurface& s = allGeometry_[shells_[shellI]];
if (modes_[shellI] != DISTANCE && isA<triSurfaceMesh>(s))
{
const triSurfaceMesh& shell = refCast<const triSurfaceMesh>(s);
if (shell.triSurface::size())
{
const pointField& points = shell.points();
hasSurface = true;
boundBox shellBb(points[0], points[0]);
// Assume surface is compact!
forAll(points, i)
{
const point& pt = points[i];
shellBb.min() = min(shellBb.min(), pt);
shellBb.max() = max(shellBb.max(), pt);
}
overallBb.min() = min(overallBb.min(), shellBb.min());
overallBb.max() = max(overallBb.max(), shellBb.max());
}
}
}
if (hasSurface)
{
const point outsidePt = overallBb.max() + overallBb.span();
//Info<< "Using point " << outsidePt << " to orient shells" << endl;
forAll(shells_, shellI)
{
const searchableSurface& s = allGeometry_[shells_[shellI]];
if (modes_[shellI] != DISTANCE && isA<triSurfaceMesh>(s))
{
triSurfaceMesh& shell = const_cast<triSurfaceMesh&>
(
refCast<const triSurfaceMesh>(s)
);
// Flip surface so outsidePt is outside.
bool anyFlipped = orientedSurface::orient
(
shell,
outsidePt,
true
);
if (anyFlipped)
{
// orientedSurface will have done a clearOut of the surface.
// we could do a clearout of the triSurfaceMeshes::trees()
// but these aren't affected by orientation
// (except for cached
// sideness which should not be set at this point.
// !!Should check!)
Info<< "shellSurfaces : Flipped orientation of surface "
<< s.name()
<< " so point " << outsidePt << " is outside." << endl;
}
}
}
}
}
// Find maximum level of a shell.
void Foam::shellSurfaces::findHigherLevel
(
const pointField& pt,
const label shellI,
labelList& maxLevel
) const
{
const labelList& levels = levels_[shellI];
if (modes_[shellI] == DISTANCE)
{
// Distance mode.
const scalarField& distances = distances_[shellI];
// Collect all those points that have a current maxLevel less than
// (any of) the shell. Also collect the furthest distance allowable
// to any shell with a higher level.
pointField candidates(pt.size());
labelList candidateMap(pt.size());
scalarField candidateDistSqr(pt.size());
label candidateI = 0;
forAll(maxLevel, pointI)
{
forAllReverse(levels, levelI)
{
if (levels[levelI] > maxLevel[pointI])
{
candidates[candidateI] = pt[pointI];
candidateMap[candidateI] = pointI;
candidateDistSqr[candidateI] = sqr(distances[levelI]);
candidateI++;
break;
}
}
}
candidates.setSize(candidateI);
candidateMap.setSize(candidateI);
candidateDistSqr.setSize(candidateI);
// Do the expensive nearest test only for the candidate points.
List<pointIndexHit> nearInfo;
allGeometry_[shells_[shellI]].findNearest
(
candidates,
candidateDistSqr,
nearInfo
);
// Update maxLevel
forAll(nearInfo, i)
{
if (nearInfo[i].hit())
{
// Check which level it actually is in.
label minDistI = findLower
(
distances,
mag(nearInfo[i].hitPoint()-candidates[i])
);
label pointI = candidateMap[i];
// pt is inbetween shell[minDistI] and shell[minDistI+1]
maxLevel[pointI] = levels[minDistI+1];
}
}
}
else
{
// Inside/outside mode
// Collect all those points that have a current maxLevel less than the
// shell.
pointField candidates(pt.size());
labelList candidateMap(pt.size());
label candidateI = 0;
forAll(maxLevel, pointI)
{
if (levels[0] > maxLevel[pointI])
{
candidates[candidateI] = pt[pointI];
candidateMap[candidateI] = pointI;
candidateI++;
}
}
candidates.setSize(candidateI);
candidateMap.setSize(candidateI);
// Do the expensive nearest test only for the candidate points.
List<volumeType> volType;
allGeometry_[shells_[shellI]].getVolumeType(candidates, volType);
forAll(volType, i)
{
label pointI = candidateMap[i];
if
(
(
modes_[shellI] == INSIDE
&& volType[i] == volumeType::INSIDE
)
|| (
modes_[shellI] == OUTSIDE
&& volType[i] == volumeType::OUTSIDE
)
)
{
maxLevel[pointI] = levels[0];
}
}
}
}
void Foam::shellSurfaces::findHigherGapLevel
(
const pointField& pt,
const labelList& ptLevel,
const label shellI,
labelList& gapShell,
List<FixedList<label, 3> >& gapInfo,
List<volumeType>& gapMode
) const
{
//TBD: hardcoded for region 0 information
const FixedList<label, 3>& info = extendedGapLevel_[shellI][0];
volumeType mode = extendedGapMode_[shellI][0];
if (info[2] == 0)
{
return;
}
// Collect all those points that have a current maxLevel less than the
// shell.
labelList candidateMap(pt.size());
label candidateI = 0;
forAll(ptLevel, pointI)
{
if (ptLevel[pointI] >= info[1] && ptLevel[pointI] < info[2])
{
candidateMap[candidateI++] = pointI;
}
}
candidateMap.setSize(candidateI);
// Do the expensive nearest test only for the candidate points.
List<volumeType> volType;
allGeometry_[shells_[shellI]].getVolumeType
(
pointField(pt, candidateMap),
volType
);
forAll(volType, i)
{
label pointI = candidateMap[i];
bool isInside = (volType[i] == volumeType::INSIDE);
if
(
(
(modes_[shellI] == INSIDE && isInside)
|| (modes_[shellI] == OUTSIDE && !isInside)
)
&& info[2] > gapInfo[pointI][2]
)
{
gapShell[pointI] = shellI;
gapInfo[pointI] = info;
gapMode[pointI] = mode;
}
}
}
void Foam::shellSurfaces::findLevel
(
const pointField& pt,
const label shellI,
labelList& minLevel,
labelList& shell
) const
{
const labelList& levels = levels_[shellI];
if (modes_[shellI] == DISTANCE)
{
// Distance mode.
const scalarField& distances = distances_[shellI];
// Collect all those points that have a current level equal/greater
// (any of) the shell. Also collect the furthest distance allowable
// to any shell with a higher level.
pointField candidates(pt.size());
labelList candidateMap(pt.size());
scalarField candidateDistSqr(pt.size());
label candidateI = 0;
forAll(shell, pointI)
{
if (shell[pointI] == -1)
{
forAllReverse(levels, levelI)
{
if (levels[levelI] <= minLevel[pointI])
{
candidates[candidateI] = pt[pointI];
candidateMap[candidateI] = pointI;
candidateDistSqr[candidateI] = sqr(distances[levelI]);
candidateI++;
break;
}
}
}
}
candidates.setSize(candidateI);
candidateMap.setSize(candidateI);
candidateDistSqr.setSize(candidateI);
// Do the expensive nearest test only for the candidate points.
List<pointIndexHit> nearInfo;
allGeometry_[shells_[shellI]].findNearest
(
candidates,
candidateDistSqr,
nearInfo
);
// Update maxLevel
forAll(nearInfo, i)
{
if (nearInfo[i].hit())
{
// Check which level it actually is in.
label minDistI = findLower
(
distances,
mag(nearInfo[i].hitPoint()-candidates[i])
);
label pointI = candidateMap[i];
// pt is inbetween shell[minDistI] and shell[minDistI+1]
shell[pointI] = shellI;
minLevel[pointI] = levels[minDistI+1];
}
}
}
else
{
// Inside/outside mode
// Collect all those points that have a current maxLevel less than the
// shell.
pointField candidates(pt.size());
labelList candidateMap(pt.size());
label candidateI = 0;
forAll(shell, pointI)
{
if (shell[pointI] == -1 && levels[0] <= minLevel[pointI])
{
candidates[candidateI] = pt[pointI];
candidateMap[candidateI] = pointI;
candidateI++;
}
}
candidates.setSize(candidateI);
candidateMap.setSize(candidateI);
// Do the expensive nearest test only for the candidate points.
List<volumeType> volType;
allGeometry_[shells_[shellI]].getVolumeType(candidates, volType);
forAll(volType, i)
{
if
(
(
modes_[shellI] == INSIDE
&& volType[i] == volumeType::INSIDE
)
|| (
modes_[shellI] == OUTSIDE
&& volType[i] == volumeType::OUTSIDE
)
)
{
label pointI = candidateMap[i];
shell[pointI] = shellI;
minLevel[pointI] = levels[0];
}
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::shellSurfaces::shellSurfaces
(
const searchableSurfaces& allGeometry,
const dictionary& shellsDict
)
:
allGeometry_(allGeometry)
{
// Wilcard specification : loop over all surfaces and try to find a match.
// Count number of shells.
label shellI = 0;
forAll(allGeometry.names(), geomI)
{
const word& geomName = allGeometry_.names()[geomI];
if (shellsDict.found(geomName))
{
shellI++;
}
}
// Size lists
shells_.setSize(shellI);
modes_.setSize(shellI);
distances_.setSize(shellI);
levels_.setSize(shellI);
extendedGapLevel_.setSize(shellI);
extendedGapMode_.setSize(shellI);
FixedList<label, 3> nullGapLevel;
nullGapLevel[0] = 0;
nullGapLevel[1] = 0;
nullGapLevel[2] = 0;
HashSet<word> unmatchedKeys(shellsDict.toc());
shellI = 0;
forAll(allGeometry_.names(), geomI)
{
const word& geomName = allGeometry_.names()[geomI];
const entry* ePtr = shellsDict.lookupEntryPtr(geomName, false, true);
if (ePtr)
{
const dictionary& dict = ePtr->dict();
unmatchedKeys.erase(ePtr->keyword());
shells_[shellI] = geomI;
modes_[shellI] = refineModeNames_.read(dict.lookup("mode"));
// Read pairs of distance+level
setAndCheckLevels(shellI, dict.lookup("levels"));
// Gap specification
// ~~~~~~~~~~~~~~~~~
// Shell-wide gap level specification
const searchableSurface& surface = allGeometry_[geomI];
const wordList& regionNames = surface.regions();
FixedList<label, 3> gapSpec
(
dict.lookupOrDefault
(
"gapLevel",
nullGapLevel
)
);
extendedGapLevel_[shellI].setSize(regionNames.size());
extendedGapLevel_[shellI] = gapSpec;
volumeType gapModeSpec
(
volumeType::names
[
dict.lookupOrDefault<word>
(
"gapMode",
volumeType::names[volumeType::MIXED]
)
]
);
extendedGapMode_[shellI].setSize(regionNames.size());
extendedGapMode_[shellI] = gapModeSpec;
// Override on a per-region basis?
if (dict.found("regions"))
{
const dictionary& regionsDict = dict.subDict("regions");
forAll(regionNames, regionI)
{
if (regionsDict.found(regionNames[regionI]))
{
// Get the dictionary for region
const dictionary& regionDict = regionsDict.subDict
(
regionNames[regionI]
);
FixedList<label, 3> gapSpec
(
regionDict.lookupOrDefault
(
"gapLevel",
nullGapLevel
)
);
extendedGapLevel_[shellI][regionI] = gapSpec;
volumeType gapModeSpec
(
volumeType::names
[
regionDict.lookupOrDefault<word>
(
"gapMode",
volumeType::names[volumeType::MIXED]
)
]
);
extendedGapMode_[shellI][regionI] = gapModeSpec;
}
}
}
checkGapLevels(dict, shellI, extendedGapLevel_[shellI]);
shellI++;
}
}
if (unmatchedKeys.size() > 0)
{
IOWarningIn
(
"shellSurfaces::shellSurfaces(..)",
shellsDict
) << "Not all entries in refinementRegions dictionary were used."
<< " The following entries were not used : "
<< unmatchedKeys.sortedToc()
<< endl;
}
// Orient shell surfaces before any searching is done. Note that this
// only needs to be done for inside or outside. Orienting surfaces
// constructs lots of addressing which we want to avoid.
orient();
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
// Highest shell level
Foam::label Foam::shellSurfaces::maxLevel() const
{
label overallMax = 0;
forAll(levels_, shellI)
{
overallMax = max(overallMax, max(levels_[shellI]));
}
return overallMax;
}
Foam::labelList Foam::shellSurfaces::maxGapLevel() const
{
labelList surfaceMax(extendedGapLevel_.size(), 0);
forAll(extendedGapLevel_, shellI)
{
const List<FixedList<label, 3> >& levels = extendedGapLevel_[shellI];
forAll(levels, i)
{
surfaceMax[shellI] = max(surfaceMax[shellI], levels[i][2]);
}
}
return surfaceMax;
}
void Foam::shellSurfaces::findHigherLevel
(
const pointField& pt,
const labelList& ptLevel,
labelList& maxLevel
) const
{
// Maximum level of any shell. Start off with level of point.
maxLevel = ptLevel;
forAll(shells_, shellI)
{
findHigherLevel(pt, shellI, maxLevel);
}
}
void Foam::shellSurfaces::findHigherGapLevel
(
const pointField& pt,
const labelList& ptLevel,
labelList& gapShell,
List<FixedList<label, 3> >& gapInfo,
List<volumeType>& gapMode
) const
{
gapShell.setSize(pt.size());
gapShell = -1;
FixedList<label, 3> nullGapLevel;
nullGapLevel[0] = 0;
nullGapLevel[1] = 0;
nullGapLevel[2] = 0;
gapInfo.setSize(pt.size());
gapInfo = nullGapLevel;
gapMode.setSize(pt.size());
gapMode = volumeType::MIXED;
forAll(shells_, shellI)
{
findHigherGapLevel(pt, ptLevel, shellI, gapShell, gapInfo, gapMode);
}
}
void Foam::shellSurfaces::findHigherGapLevel
(
const pointField& pt,
const labelList& ptLevel,
List<FixedList<label, 3> >& gapInfo,
List<volumeType>& gapMode
) const
{
labelList gapShell;
findHigherGapLevel(pt, ptLevel, gapShell, gapInfo, gapMode);
}
void Foam::shellSurfaces::findLevel
(
const pointField& pt,
const labelList& ptLevel,
labelList& shell
) const
{
shell.setSize(pt.size());
shell = -1;
labelList minLevel(ptLevel);
forAll(shells_, shellI)
{
findLevel(pt, shellI, minLevel, shell);
}
}
// ************************************************************************* //