Files
openfoam/src/mesh/autoMesh/autoHexMesh/refinementFeatures/refinementFeatures.C
2013-04-16 17:01:23 +01:00

512 lines
14 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "refinementFeatures.H"
#include "Time.H"
#include "Tuple2.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::refinementFeatures::read
(
const objectRegistry& io,
const PtrList<dictionary>& featDicts
)
{
forAll(featDicts, featI)
{
const dictionary& dict = featDicts[featI];
fileName featFileName(dict.lookup("file"));
{
IOobject featObj
(
featFileName, // name
io.time().constant(), // instance
"triSurface", // local
io.time(), // registry
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
autoPtr<edgeMesh> eMeshPtr = edgeMesh::New(featObj.filePath());
set
(
featI,
new featureEdgeMesh
(
featObj,
eMeshPtr->points(),
eMeshPtr->edges()
)
);
}
const featureEdgeMesh& eMesh = operator[](featI);
//eMesh.mergePoints(meshRefiner_.mergeDistance());
if (dict.found("levels"))
{
List<Tuple2<scalar, label> > distLevels(dict["levels"]);
if (dict.size() < 1)
{
FatalErrorIn
(
"refinementFeatures::read"
"(const objectRegistry&"
", const PtrList<dictionary>&)"
) << " : levels should be at least size 1" << endl
<< "levels : " << dict["levels"]
<< exit(FatalError);
}
distances_[featI].setSize(distLevels.size());
levels_[featI].setSize(distLevels.size());
forAll(distLevels, j)
{
distances_[featI][j] = distLevels[j].first();
levels_[featI][j] = distLevels[j].second();
// Check in incremental order
if (j > 0)
{
if
(
(distances_[featI][j] <= distances_[featI][j-1])
|| (levels_[featI][j] > levels_[featI][j-1])
)
{
FatalErrorIn
(
"refinementFeatures::read"
"(const objectRegistry&"
", const PtrList<dictionary>&)"
) << " : Refinement should be specified in order"
<< " of increasing distance"
<< " (and decreasing refinement level)." << endl
<< "Distance:" << distances_[featI][j]
<< " refinementLevel:" << levels_[featI][j]
<< exit(FatalError);
}
}
}
}
else
{
// Look up 'level' for single level
levels_[featI] = labelList(1, readLabel(dict.lookup("level")));
distances_[featI] = scalarField(1, 0.0);
}
Info<< "Refinement level according to distance to "
<< featFileName << " (" << eMesh.points().size() << " points, "
<< eMesh.edges().size() << " edges)." << endl;
forAll(levels_[featI], j)
{
Info<< " level " << levels_[featI][j]
<< " for all cells within " << distances_[featI][j]
<< " metre." << endl;
}
}
}
void Foam::refinementFeatures::buildTrees
(
const label featI,
const labelList& featurePoints
)
{
const featureEdgeMesh& eMesh = operator[](featI);
const pointField& points = eMesh.points();
const edgeList& edges = eMesh.edges();
// Calculate bb of all points
treeBoundBox bb(points);
// Random number generator. Bit dodgy since not exactly random ;-)
Random rndGen(65431);
// Slightly extended bb. Slightly off-centred just so on symmetric
// geometry there are less face/edge aligned items.
bb = bb.extend(rndGen, 1e-4);
bb.min() -= point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
bb.max() += point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
edgeTrees_.set
(
featI,
new indexedOctree<treeDataEdge>
(
treeDataEdge
(
false, // do not cache bb
edges,
points,
identity(edges.size())
),
bb, // overall search domain
8, // maxLevel
10, // leafsize
3.0 // duplicity
)
);
pointTrees_.set
(
featI,
new indexedOctree<treeDataPoint>
(
treeDataPoint(points, featurePoints),
bb, // overall search domain
8, // maxLevel
10, // leafsize
3.0 // duplicity
)
);
}
// Find maximum level of a shell.
void Foam::refinementFeatures::findHigherLevel
(
const pointField& pt,
const label featI,
labelList& maxLevel
) const
{
const labelList& levels = levels_[featI];
const scalarField& distances = distances_[featI];
// Collect all those points that have a current maxLevel less than
// (any of) the shell. Also collect the furthest distance allowable
// to any shell with a higher level.
pointField candidates(pt.size());
labelList candidateMap(pt.size());
scalarField candidateDistSqr(pt.size());
label candidateI = 0;
forAll(maxLevel, pointI)
{
forAllReverse(levels, levelI)
{
if (levels[levelI] > maxLevel[pointI])
{
candidates[candidateI] = pt[pointI];
candidateMap[candidateI] = pointI;
candidateDistSqr[candidateI] = sqr(distances[levelI]);
candidateI++;
break;
}
}
}
candidates.setSize(candidateI);
candidateMap.setSize(candidateI);
candidateDistSqr.setSize(candidateI);
// Do the expensive nearest test only for the candidate points.
const indexedOctree<treeDataEdge>& tree = edgeTrees_[featI];
List<pointIndexHit> nearInfo(candidates.size());
forAll(candidates, candidateI)
{
nearInfo[candidateI] = tree.findNearest
(
candidates[candidateI],
candidateDistSqr[candidateI]
);
}
// Update maxLevel
forAll(nearInfo, candidateI)
{
if (nearInfo[candidateI].hit())
{
// Check which level it actually is in.
label minDistI = findLower
(
distances,
mag(nearInfo[candidateI].hitPoint()-candidates[candidateI])
);
label pointI = candidateMap[candidateI];
// pt is inbetween shell[minDistI] and shell[minDistI+1]
maxLevel[pointI] = levels[minDistI+1];
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::refinementFeatures::refinementFeatures
(
const objectRegistry& io,
const PtrList<dictionary>& featDicts
)
:
PtrList<featureEdgeMesh>(featDicts.size()),
distances_(featDicts.size()),
levels_(featDicts.size()),
edgeTrees_(featDicts.size()),
pointTrees_(featDicts.size())
{
// Read features
read(io, featDicts);
// Search engines
forAll(*this, i)
{
const featureEdgeMesh& eMesh = operator[](i);
const labelListList& pointEdges = eMesh.pointEdges();
DynamicList<label> featurePoints;
forAll(pointEdges, pointI)
{
if (pointEdges[pointI].size() > 2)
{
featurePoints.append(pointI);
}
}
Info<< "Detected " << featurePoints.size()
<< " featurePoints out of " << pointEdges.size()
<< " on feature " << eMesh.name() << endl;
buildTrees(i, featurePoints);
}
}
Foam::refinementFeatures::refinementFeatures
(
const objectRegistry& io,
const PtrList<dictionary>& featDicts,
const scalar minCos
)
:
PtrList<featureEdgeMesh>(featDicts.size()),
distances_(featDicts.size()),
levels_(featDicts.size()),
edgeTrees_(featDicts.size()),
pointTrees_(featDicts.size())
{
// Read features
read(io, featDicts);
// Search engines
forAll(*this, i)
{
const featureEdgeMesh& eMesh = operator[](i);
const pointField& points = eMesh.points();
const edgeList& edges = eMesh.edges();
const labelListList& pointEdges = eMesh.pointEdges();
DynamicList<label> featurePoints;
forAll(pointEdges, pointI)
{
const labelList& pEdges = pointEdges[pointI];
if (pEdges.size() > 2)
{
featurePoints.append(pointI);
}
else if (pEdges.size() == 2)
{
// Check the angle
const edge& e0 = edges[pEdges[0]];
const edge& e1 = edges[pEdges[1]];
const point& p = points[pointI];
const point& p0 = points[e0.otherVertex(pointI)];
const point& p1 = points[e1.otherVertex(pointI)];
vector v0 = p-p0;
scalar v0Mag = mag(v0);
vector v1 = p1-p;
scalar v1Mag = mag(v1);
if
(
v0Mag > SMALL
&& v1Mag > SMALL
&& ((v0/v0Mag & v1/v1Mag) < minCos)
)
{
featurePoints.append(pointI);
}
}
}
Info<< "Detected " << featurePoints.size()
<< " featurePoints out of " << points.size()
<< " on feature " << eMesh.name()
<< " when using feature cos " << minCos << endl;
buildTrees(i, featurePoints);
}
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::refinementFeatures::findNearestEdge
(
const pointField& samples,
const scalarField& nearestDistSqr,
labelList& nearFeature,
List<pointIndexHit>& nearInfo
) const
{
nearFeature.setSize(samples.size());
nearFeature = -1;
nearInfo.setSize(samples.size());
forAll(edgeTrees_, featI)
{
const indexedOctree<treeDataEdge>& tree = edgeTrees_[featI];
if (tree.shapes().size() > 0)
{
forAll(samples, sampleI)
{
const point& sample = samples[sampleI];
scalar distSqr;
if (nearInfo[sampleI].hit())
{
distSqr = magSqr(nearInfo[sampleI].hitPoint()-sample);
}
else
{
distSqr = nearestDistSqr[sampleI];
}
pointIndexHit info = tree.findNearest(sample, distSqr);
if (info.hit())
{
nearInfo[sampleI] = info;
nearFeature[sampleI] = featI;
}
}
}
}
}
void Foam::refinementFeatures::findNearestPoint
(
const pointField& samples,
const scalarField& nearestDistSqr,
labelList& nearFeature,
labelList& nearIndex
) const
{
nearFeature.setSize(samples.size());
nearFeature = -1;
nearIndex.setSize(samples.size());
nearIndex = -1;
forAll(pointTrees_, featI)
{
const indexedOctree<treeDataPoint>& tree = pointTrees_[featI];
if (tree.shapes().pointLabels().size() > 0)
{
forAll(samples, sampleI)
{
const point& sample = samples[sampleI];
scalar distSqr;
if (nearFeature[sampleI] != -1)
{
label nearFeatI = nearFeature[sampleI];
const indexedOctree<treeDataPoint>& nearTree =
pointTrees_[nearFeatI];
label featPointI =
nearTree.shapes().pointLabels()[nearIndex[sampleI]];
const point& featPt =
operator[](nearFeatI).points()[featPointI];
distSqr = magSqr(featPt-sample);
}
else
{
distSqr = nearestDistSqr[sampleI];
}
pointIndexHit info = tree.findNearest(sample, distSqr);
if (info.hit())
{
nearFeature[sampleI] = featI;
nearIndex[sampleI] = info.index();
}
}
}
}
}
void Foam::refinementFeatures::findHigherLevel
(
const pointField& pt,
const labelList& ptLevel,
labelList& maxLevel
) const
{
// Maximum level of any shell. Start off with level of point.
maxLevel = ptLevel;
forAll(*this, featI)
{
findHigherLevel(pt, featI, maxLevel);
}
}
Foam::scalar Foam::refinementFeatures::maxDistance() const
{
scalar overallMax = -GREAT;
forAll(distances_, featI)
{
overallMax = max(overallMax, max(distances_[featI]));
}
return overallMax;
}
// ************************************************************************* //