Files
openfoam/src/TurbulenceModels/turbulenceModels/RAS/derivedFvPatchFields/wallFunctions/epsilonWallFunctions/epsilonWallFunction/epsilonWallFunctionFvPatchScalarField.C

590 lines
14 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "epsilonWallFunctionFvPatchScalarField.H"
#include "turbulenceModel.H"
#include "fvPatchFieldMapper.H"
#include "fvMatrix.H"
#include "volFields.H"
#include "wallFvPatch.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * //
void epsilonWallFunctionFvPatchScalarField::checkType()
{
if (!isA<wallFvPatch>(patch()))
{
FatalErrorIn("epsilonWallFunctionFvPatchScalarField::checkType()")
<< "Invalid wall function specification" << nl
<< " Patch type for patch " << patch().name()
<< " must be wall" << nl
<< " Current patch type is " << patch().type() << nl << endl
<< abort(FatalError);
}
}
void epsilonWallFunctionFvPatchScalarField::writeLocalEntries(Ostream& os) const
{
os.writeKeyword("Cmu") << Cmu_ << token::END_STATEMENT << nl;
os.writeKeyword("kappa") << kappa_ << token::END_STATEMENT << nl;
os.writeKeyword("E") << E_ << token::END_STATEMENT << nl;
}
void epsilonWallFunctionFvPatchScalarField::setMaster()
{
if (master_ != -1)
{
return;
}
const volScalarField& epsilon =
static_cast<const volScalarField&>(this->dimensionedInternalField());
const volScalarField::GeometricBoundaryField& bf = epsilon.boundaryField();
label master = -1;
forAll(bf, patchi)
{
if (isA<epsilonWallFunctionFvPatchScalarField>(bf[patchi]))
{
epsilonWallFunctionFvPatchScalarField& epf = epsilonPatch(patchi);
if (master == -1)
{
master = patchi;
}
epf.master() = master;
}
}
}
void epsilonWallFunctionFvPatchScalarField::createAveragingWeights()
{
if (initialised_)
{
return;
}
const volScalarField& epsilon =
static_cast<const volScalarField&>(this->dimensionedInternalField());
const volScalarField::GeometricBoundaryField& bf = epsilon.boundaryField();
const fvMesh& mesh = epsilon.mesh();
volScalarField weights
(
IOobject
(
"weights",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false // do not register
),
mesh,
dimensionedScalar("zero", dimless, 0.0)
);
DynamicList<label> epsilonPatches(bf.size());
forAll(bf, patchi)
{
if (isA<epsilonWallFunctionFvPatchScalarField>(bf[patchi]))
{
epsilonPatches.append(patchi);
const labelUList& faceCells = bf[patchi].patch().faceCells();
forAll(faceCells, i)
{
weights[faceCells[i]]++;
}
}
}
cornerWeights_.setSize(bf.size());
forAll(epsilonPatches, i)
{
label patchi = epsilonPatches[i];
const fvPatchScalarField& wf = weights.boundaryField()[patchi];
cornerWeights_[patchi] = 1.0/wf.patchInternalField();
}
G_.setSize(dimensionedInternalField().size(), 0.0);
epsilon_.setSize(dimensionedInternalField().size(), 0.0);
initialised_ = true;
}
epsilonWallFunctionFvPatchScalarField&
epsilonWallFunctionFvPatchScalarField::epsilonPatch(const label patchi)
{
const volScalarField& epsilon =
static_cast<const volScalarField&>(this->dimensionedInternalField());
const volScalarField::GeometricBoundaryField& bf = epsilon.boundaryField();
const epsilonWallFunctionFvPatchScalarField& epf =
refCast<const epsilonWallFunctionFvPatchScalarField>(bf[patchi]);
return const_cast<epsilonWallFunctionFvPatchScalarField&>(epf);
}
void epsilonWallFunctionFvPatchScalarField::calculateTurbulenceFields
(
const turbulenceModel& turbulence,
scalarField& G0,
scalarField& epsilon0
)
{
// accumulate all of the G and epsilon contributions
forAll(cornerWeights_, patchi)
{
if (!cornerWeights_[patchi].empty())
{
epsilonWallFunctionFvPatchScalarField& epf = epsilonPatch(patchi);
const List<scalar>& w = cornerWeights_[patchi];
epf.calculate(turbulence, w, epf.patch(), G0, epsilon0);
}
}
// apply zero-gradient condition for epsilon
forAll(cornerWeights_, patchi)
{
if (!cornerWeights_[patchi].empty())
{
epsilonWallFunctionFvPatchScalarField& epf = epsilonPatch(patchi);
epf == scalarField(epsilon0, epf.patch().faceCells());
}
}
}
void epsilonWallFunctionFvPatchScalarField::calculate
(
const turbulenceModel& turbulence,
const List<scalar>& cornerWeights,
const fvPatch& patch,
scalarField& G,
scalarField& epsilon
)
{
const label patchi = patch.index();
const scalarField& y = turbulence.y()[patchi];
const scalar Cmu25 = pow025(Cmu_);
const scalar Cmu75 = pow(Cmu_, 0.75);
const tmp<volScalarField> tk = turbulence.k();
const volScalarField& k = tk();
const tmp<scalarField> tnuw = turbulence.nu(patchi);
const scalarField& nuw = tnuw();
const tmp<scalarField> tnutw = turbulence.nut(patchi);
const scalarField& nutw = tnutw();
const fvPatchVectorField& Uw = turbulence.U().boundaryField()[patchi];
const scalarField magGradUw(mag(Uw.snGrad()));
// Set epsilon and G
forAll(nutw, facei)
{
label celli = patch.faceCells()[facei];
scalar w = cornerWeights[facei];
epsilon[celli] += w*Cmu75*pow(k[celli], 1.5)/(kappa_*y[facei]);
G[celli] +=
w
*(nutw[facei] + nuw[facei])
*magGradUw[facei]
*Cmu25*sqrt(k[celli])
/(kappa_*y[facei]);
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
epsilonWallFunctionFvPatchScalarField::epsilonWallFunctionFvPatchScalarField
(
const fvPatch& p,
const DimensionedField<scalar, volMesh>& iF
)
:
fixedValueFvPatchField<scalar>(p, iF),
Cmu_(0.09),
kappa_(0.41),
E_(9.8),
G_(),
epsilon_(),
initialised_(false),
master_(-1),
cornerWeights_()
{
checkType();
}
epsilonWallFunctionFvPatchScalarField::epsilonWallFunctionFvPatchScalarField
(
const epsilonWallFunctionFvPatchScalarField& ptf,
const fvPatch& p,
const DimensionedField<scalar, volMesh>& iF,
const fvPatchFieldMapper& mapper
)
:
fixedValueFvPatchField<scalar>(ptf, p, iF, mapper),
Cmu_(ptf.Cmu_),
kappa_(ptf.kappa_),
E_(ptf.E_),
G_(),
epsilon_(),
initialised_(false),
master_(-1),
cornerWeights_()
{
checkType();
}
epsilonWallFunctionFvPatchScalarField::epsilonWallFunctionFvPatchScalarField
(
const fvPatch& p,
const DimensionedField<scalar, volMesh>& iF,
const dictionary& dict
)
:
fixedValueFvPatchField<scalar>(p, iF, dict),
Cmu_(dict.lookupOrDefault<scalar>("Cmu", 0.09)),
kappa_(dict.lookupOrDefault<scalar>("kappa", 0.41)),
E_(dict.lookupOrDefault<scalar>("E", 9.8)),
G_(),
epsilon_(),
initialised_(false),
master_(-1),
cornerWeights_()
{
checkType();
// apply zero-gradient condition on start-up
this->operator==(patchInternalField());
}
epsilonWallFunctionFvPatchScalarField::epsilonWallFunctionFvPatchScalarField
(
const epsilonWallFunctionFvPatchScalarField& ewfpsf
)
:
fixedValueFvPatchField<scalar>(ewfpsf),
Cmu_(ewfpsf.Cmu_),
kappa_(ewfpsf.kappa_),
E_(ewfpsf.E_),
G_(),
epsilon_(),
initialised_(false),
master_(-1),
cornerWeights_()
{
checkType();
}
epsilonWallFunctionFvPatchScalarField::epsilonWallFunctionFvPatchScalarField
(
const epsilonWallFunctionFvPatchScalarField& ewfpsf,
const DimensionedField<scalar, volMesh>& iF
)
:
fixedValueFvPatchField<scalar>(ewfpsf, iF),
Cmu_(ewfpsf.Cmu_),
kappa_(ewfpsf.kappa_),
E_(ewfpsf.E_),
G_(),
epsilon_(),
initialised_(false),
master_(-1),
cornerWeights_()
{
checkType();
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
scalarField& epsilonWallFunctionFvPatchScalarField::G(bool init)
{
if (patch().index() == master_)
{
if (init)
{
G_ = 0.0;
}
return G_;
}
return epsilonPatch(master_).G();
}
scalarField& epsilonWallFunctionFvPatchScalarField::epsilon(bool init)
{
if (patch().index() == master_)
{
if (init)
{
epsilon_ = 0.0;
}
return epsilon_;
}
return epsilonPatch(master_).epsilon(init);
}
void epsilonWallFunctionFvPatchScalarField::updateCoeffs()
{
if (updated())
{
return;
}
const turbulenceModel& turbModel = db().lookupObject<turbulenceModel>
(
IOobject::groupName
(
turbulenceModel::propertiesName,
dimensionedInternalField().group()
)
);
setMaster();
if (patch().index() == master_)
{
createAveragingWeights();
calculateTurbulenceFields(turbModel, G(true), epsilon(true));
}
const scalarField& G0 = this->G();
const scalarField& epsilon0 = this->epsilon();
typedef DimensionedField<scalar, volMesh> FieldType;
FieldType& G =
const_cast<FieldType&>
(
db().lookupObject<FieldType>(turbModel.GName())
);
FieldType& epsilon = const_cast<FieldType&>(dimensionedInternalField());
forAll(*this, facei)
{
label celli = patch().faceCells()[facei];
G[celli] = G0[celli];
epsilon[celli] = epsilon0[celli];
}
fvPatchField<scalar>::updateCoeffs();
}
void epsilonWallFunctionFvPatchScalarField::updateCoeffs
(
const scalarField& weights
)
{
if (updated())
{
return;
}
const turbulenceModel& turbModel = db().lookupObject<turbulenceModel>
(
IOobject::groupName
(
turbulenceModel::propertiesName,
dimensionedInternalField().group()
)
);
setMaster();
if (patch().index() == master_)
{
createAveragingWeights();
calculateTurbulenceFields(turbModel, G(true), epsilon(true));
}
const scalarField& G0 = this->G();
const scalarField& epsilon0 = this->epsilon();
typedef DimensionedField<scalar, volMesh> FieldType;
FieldType& G =
const_cast<FieldType&>
(
db().lookupObject<FieldType>(turbModel.GName())
);
FieldType& epsilon = const_cast<FieldType&>(dimensionedInternalField());
scalarField& epsilonf = *this;
// only set the values if the weights are < 1 - tolerance
forAll(weights, facei)
{
scalar w = weights[facei];
if (w < 1.0 - 1e-6)
{
label celli = patch().faceCells()[facei];
G[celli] = w*G[celli] + (1.0 - w)*G0[celli];
epsilon[celli] = w*epsilon[celli] + (1.0 - w)*epsilon0[celli];
epsilonf[facei] = epsilon[celli];
}
}
fvPatchField<scalar>::updateCoeffs();
}
void epsilonWallFunctionFvPatchScalarField::manipulateMatrix
(
fvMatrix<scalar>& matrix
)
{
if (manipulatedMatrix())
{
return;
}
matrix.setValues(patch().faceCells(), patchInternalField());
fvPatchField<scalar>::manipulateMatrix(matrix);
}
void epsilonWallFunctionFvPatchScalarField::manipulateMatrix
(
fvMatrix<scalar>& matrix,
const Field<scalar>& weights
)
{
if (manipulatedMatrix())
{
return;
}
// filter weights so that we only apply the constraint where the
// weight > SMALL
DynamicList<label> constraintCells(weights.size());
DynamicList<scalar> constraintEpsilon(weights.size());
const labelUList& faceCells = patch().faceCells();
const DimensionedField<scalar, volMesh>& epsilon
= dimensionedInternalField();
label nConstrainedCells = 0;
forAll(weights, facei)
{
// only set the values if the weights are < 1 - tolerance
if (weights[facei] < (1.0 - 1e-6))
{
nConstrainedCells++;
label celli = faceCells[facei];
constraintCells.append(celli);
constraintEpsilon.append(epsilon[celli]);
}
}
if (debug)
{
Pout<< "Patch: " << patch().name()
<< ": number of constrained cells = " << nConstrainedCells
<< " out of " << patch().size()
<< endl;
}
matrix.setValues
(
constraintCells,
scalarField(constraintEpsilon.xfer())
);
fvPatchField<scalar>::manipulateMatrix(matrix);
}
void epsilonWallFunctionFvPatchScalarField::write(Ostream& os) const
{
fixedValueFvPatchField<scalar>::write(os);
writeLocalEntries(os);
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
makePatchTypeField
(
fvPatchScalarField,
epsilonWallFunctionFvPatchScalarField
);
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //