Files
openfoam/src/OpenFOAM/primitives/complex/complexI.H
Henry Weller 59b578f155 Provide consistency in assignment operators
Always return void to avoid various bugs associated with automatic
type conversion.

Resolves request http://openfoam.org/mantisbt/view.php?id=1973
2016-01-17 18:56:28 +00:00

313 lines
5.2 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
inline complex::complex()
{}
inline complex::complex(const scalar Re, const scalar Im)
:
re(Re),
im(Im)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
inline scalar complex::Re() const
{
return re;
}
inline scalar complex::Im() const
{
return im;
}
inline scalar& complex::Re()
{
return re;
}
inline scalar& complex::Im()
{
return im;
}
inline complex complex::conjugate() const
{
return complex(re, -im);
}
// * * * * * * * * * * * * * * * Member Operators * * * * * * * * * * * * * //
inline void complex::operator=(const complex& c)
{
re = c.re;
im = c.im;
}
inline void complex::operator+=(const complex& c)
{
re += c.re;
im += c.im;
}
inline void complex::operator-=(const complex& c)
{
re -= c.re;
im -= c.im;
}
inline void complex::operator*=(const complex& c)
{
*this = (*this)*c;
}
inline void complex::operator/=(const complex& c)
{
*this = *this/c;
}
inline void complex::operator=(const scalar s)
{
re = s;
im = 0.0;
}
inline void complex::operator+=(const scalar s)
{
re += s;
}
inline void complex::operator-=(const scalar s)
{
re -= s;
}
inline void complex::operator*=(const scalar s)
{
re *= s;
im *= s;
}
inline void complex::operator/=(const scalar s)
{
re /= s;
im /= s;
}
inline complex complex::operator!() const
{
return conjugate();
}
inline bool complex::operator==(const complex& c) const
{
return (equal(re, c.re) && equal(im, c.im));
}
inline bool complex::operator!=(const complex& c) const
{
return !operator==(c);
}
// * * * * * * * * * * * * * * * Friend Functions * * * * * * * * * * * * * //
inline scalar magSqr(const complex& c)
{
return (c.re*c.re + c.im*c.im);
}
inline complex sqr(const complex& c)
{
return c * c;
}
inline scalar mag(const complex& c)
{
return sqrt(magSqr(c));
}
inline const complex& max(const complex& c1, const complex& c2)
{
if (mag(c1) > mag(c2))
{
return c1;
}
else
{
return c2;
}
}
inline const complex& min(const complex& c1, const complex& c2)
{
if (mag(c1) < mag(c2))
{
return c1;
}
else
{
return c2;
}
}
inline complex limit(const complex& c1, const complex& c2)
{
return complex(limit(c1.re, c2.re), limit(c1.im, c2.im));
}
inline const complex& sum(const complex& c)
{
return c;
}
template<class Cmpt>
class Tensor;
inline complex transform(const Tensor<scalar>&, const complex c)
{
return c;
}
// * * * * * * * * * * * * * * * Friend Operators * * * * * * * * * * * * * //
inline complex operator+(const complex& c1, const complex& c2)
{
return complex
(
c1.re + c2.re,
c1.im + c2.im
);
}
inline complex operator-(const complex& c)
{
return complex
(
-c.re,
-c.im
);
}
inline complex operator-(const complex& c1, const complex& c2)
{
return complex
(
c1.re - c2.re,
c1.im - c2.im
);
}
inline complex operator*(const complex& c1, const complex& c2)
{
return complex
(
c1.re*c2.re - c1.im*c2.im,
c1.im*c2.re + c1.re*c2.im
);
}
inline complex operator/(const complex& c1, const complex& c2)
{
scalar sqrC2 = magSqr(c2);
return complex
(
(c1.re*c2.re + c1.im*c2.im)/sqrC2,
(c1.im*c2.re - c1.re*c2.im)/sqrC2
);
}
inline complex operator*(const scalar s, const complex& c)
{
return complex(s*c.re, s*c.im);
}
inline complex operator*(const complex& c, const scalar s)
{
return complex(s*c.re, s*c.im);
}
inline complex operator/(const complex& c, const scalar s)
{
return complex(c.re/s, c.im/s);
}
inline complex operator/(const scalar s, const complex& c)
{
return complex(s/c.re, s/c.im);
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //