Files
openfoam/applications/solvers/multiphase/multiphaseEulerFoam/multiphaseSystem/phaseModel/phaseModel.C
Mark Olesen 2f86cdc712 STYLE: more consistent use of dimensioned Zero
- when constructing dimensioned fields that are to be zero-initialized,
  it is preferrable to use a form such as

      dimensionedScalar(dims, Zero)
      dimensionedVector(dims, Zero)

  rather than

      dimensionedScalar("0", dims, 0)
      dimensionedVector("zero", dims, vector::zero)

  This reduces clutter and also avoids any suggestion that the name of
  the dimensioned quantity has any influence on the field's name.

  An even shorter version is possible. Eg,

      dimensionedScalar(dims)

  but reduces the clarity of meaning.

- NB: UniformDimensionedField is an exception to these style changes
  since it does use the name of the dimensioned type (instead of the
  regIOobject).
2018-03-16 10:24:03 +01:00

266 lines
6.2 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "phaseModel.H"
#include "diameterModel.H"
#include "fixedValueFvPatchFields.H"
#include "slipFvPatchFields.H"
#include "partialSlipFvPatchFields.H"
#include "surfaceInterpolate.H"
#include "fvcFlux.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::phaseModel::phaseModel
(
const word& phaseName,
const dictionary& phaseDict,
const fvMesh& mesh
)
:
volScalarField
(
IOobject
(
IOobject::groupName("alpha", phaseName),
mesh.time().timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
),
name_(phaseName),
phaseDict_(phaseDict),
nu_
(
"nu",
dimensionSet(0, 2, -1, 0, 0),
phaseDict_
),
kappa_
(
"kappa",
dimensionSet(1, 1, -3, -1, 0),
phaseDict_
),
Cp_
(
"Cp",
dimensionSet(0, 2, -2, -1, 0),
phaseDict_
),
rho_
(
"rho",
dimDensity,
phaseDict_
),
U_
(
IOobject
(
IOobject::groupName("U", phaseName),
mesh.time().timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
),
DDtU_
(
IOobject
(
IOobject::groupName("DDtU", phaseName),
mesh.time().timeName(),
mesh
),
mesh,
dimensionedVector(dimVelocity/dimTime, Zero)
),
alphaPhi_
(
IOobject
(
IOobject::groupName("alphaPhi", phaseName),
mesh.time().timeName(),
mesh
),
mesh,
dimensionedScalar(dimensionSet(0, 3, -1, 0, 0), Zero)
)
{
alphaPhi_.setOriented();
const word phiName = IOobject::groupName("phi", name_);
IOobject phiHeader
(
phiName,
mesh.time().timeName(),
mesh,
IOobject::NO_READ
);
if (phiHeader.typeHeaderOk<surfaceScalarField>(true))
{
Info<< "Reading face flux field " << phiName << endl;
phiPtr_.reset
(
new surfaceScalarField
(
IOobject
(
phiName,
mesh.time().timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
)
);
}
else
{
Info<< "Calculating face flux field " << phiName << endl;
wordList phiTypes
(
U_.boundaryField().size(),
calculatedFvPatchScalarField::typeName
);
forAll(U_.boundaryField(), i)
{
if
(
isA<fixedValueFvPatchVectorField>(U_.boundaryField()[i])
|| isA<slipFvPatchVectorField>(U_.boundaryField()[i])
|| isA<partialSlipFvPatchVectorField>(U_.boundaryField()[i])
)
{
phiTypes[i] = fixedValueFvPatchScalarField::typeName;
}
}
phiPtr_.reset
(
new surfaceScalarField
(
IOobject
(
phiName,
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
fvc::flux(U_),
phiTypes
)
);
}
dPtr_ = diameterModel::New
(
phaseDict_,
*this
);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::phaseModel::~phaseModel()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::autoPtr<Foam::phaseModel> Foam::phaseModel::clone() const
{
NotImplemented;
return autoPtr<phaseModel>();
}
void Foam::phaseModel::correct()
{
//nuModel_->correct();
}
bool Foam::phaseModel::read(const dictionary& phaseDict)
{
phaseDict_ = phaseDict;
//if (nuModel_->read(phaseDict_))
{
phaseDict_.lookup("nu") >> nu_.value();
phaseDict_.lookup("kappa") >> kappa_.value();
phaseDict_.lookup("Cp") >> Cp_.value();
phaseDict_.lookup("rho") >> rho_.value();
return true;
}
// else
// {
// return false;
// }
return true;
}
void Foam::phaseModel::correctInflowOutflow(surfaceScalarField& alphaPhi) const
{
surfaceScalarField::Boundary& alphaPhiBf = alphaPhi.boundaryFieldRef();
const volScalarField::Boundary& alphaBf = boundaryField();
const surfaceScalarField::Boundary& phiBf = phi().boundaryField();
forAll(alphaPhiBf, patchi)
{
fvsPatchScalarField& alphaPhip = alphaPhiBf[patchi];
if (!alphaPhip.coupled())
{
alphaPhip = phiBf[patchi]*alphaBf[patchi];
}
}
}
Foam::tmp<Foam::volScalarField> Foam::phaseModel::d() const
{
return dPtr_().d();
}
// ************************************************************************* //