Files
openfoam/src/OpenFOAM/matrices/scalarMatrices/scalarMatrices.H
2013-06-07 08:57:04 +01:00

171 lines
5.0 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
scalarMatrices
Description
Scalar matrices
LUDecompose for scalarSymmetricSquareMatrix implements the Cholesky
decomposition method from JAMA, a public-domain library developed at NIST,
available at http://math.nist.gov/tnt/index.html
SourceFiles
scalarMatrices.C
scalarMatricesTemplates.C
\*---------------------------------------------------------------------------*/
#ifndef scalarMatrices_H
#define scalarMatrices_H
#include "RectangularMatrix.H"
#include "SquareMatrix.H"
#include "SymmetricSquareMatrix.H"
#include "DiagonalMatrix.H"
#include "scalarField.H"
#include "labelList.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
typedef RectangularMatrix<scalar> scalarRectangularMatrix;
typedef SquareMatrix<scalar> scalarSquareMatrix;
typedef SymmetricSquareMatrix<scalar> scalarSymmetricSquareMatrix;
typedef DiagonalMatrix<scalar> scalarDiagonalMatrix;
//- Solve the matrix using Gaussian elimination with pivoting,
// returning the solution in the source
template<class Type>
void solve(scalarSquareMatrix& matrix, List<Type>& source);
//- Solve the matrix using Gaussian elimination with pivoting
// and return the solution
template<class Type>
void solve
(
List<Type>& psi,
const scalarSquareMatrix& matrix,
const List<Type>& source
);
//- LU decompose the matrix with pivoting
void LUDecompose
(
scalarSquareMatrix& matrix,
labelList& pivotIndices
);
//- LU decompose the matrix with pivoting.
// sign is -1 for odd number of row interchanges and 1 for even number.
void LUDecompose
(
scalarSquareMatrix& matrix,
labelList& pivotIndices,
label& sign
);
//- LU decompose the matrix into a lower (L) and upper (U) part. U = L.T()
void LUDecompose(scalarSymmetricSquareMatrix& matrix);
//- LU back-substitution with given source, returning the solution
// in the source
template<class Type>
void LUBacksubstitute
(
const scalarSquareMatrix& luMmatrix,
const labelList& pivotIndices,
List<Type>& source
);
//- LU back-substitution with given source, returning the solution
// in the source. Specialised for symmetric square matrices that have been
// decomposed into LU where U = L.T() as pivoting is not required
template<class Type>
void LUBacksubstitute
(
const scalarSymmetricSquareMatrix& luMmatrix,
List<Type>& source
);
//- Solve the matrix using LU decomposition with pivoting
// returning the LU form of the matrix and the solution in the source
template<class Type>
void LUsolve(scalarSquareMatrix& matrix, List<Type>& source);
//- Solve the matrix using LU decomposition returning the LU form of the matrix
// and the solution in the source, where U = L.T()
template<class Type>
void LUsolve(scalarSymmetricSquareMatrix& matrix, List<Type>& source);
template<class Form, class Type>
void multiply
(
Matrix<Form, Type>& answer, // value changed in return
const Matrix<Form, Type>& A,
const Matrix<Form, Type>& B
);
void multiply
(
scalarRectangularMatrix& answer, // value changed in return
const scalarRectangularMatrix& A,
const scalarRectangularMatrix& B,
const scalarRectangularMatrix& C
);
void multiply
(
scalarRectangularMatrix& answer, // value changed in return
const scalarRectangularMatrix& A,
const DiagonalMatrix<scalar>& B,
const scalarRectangularMatrix& C
);
//- Return the inverse of matrix A using SVD
scalarRectangularMatrix SVDinv
(
const scalarRectangularMatrix& A,
scalar minCondition = 0
);
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef NoRepository
# include "scalarMatricesTemplates.C"
#endif
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //