Files
openfoam/src/sampling/sampledSurface/thresholdCellFaces/thresholdCellFaces.C

289 lines
7.0 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
\*---------------------------------------------------------------------------*/
#include "thresholdCellFaces.H"
#include "polyMesh.H"
#include "DynamicList.H"
#include "emptyPolyPatch.H"
#include "processorPolyPatch.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
defineTypeNameAndDebug(Foam::thresholdCellFaces, 0);
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::thresholdCellFaces::calculate
(
const scalarField& field,
const scalar lowerThreshold,
const scalar upperThreshold,
const bool triangulate
)
{
const labelList& own = mesh_.faceOwner();
const labelList& nei = mesh_.faceNeighbour();
const faceList& origFaces = mesh_.faces();
const pointField& origPoints = mesh_.points();
const polyBoundaryMesh& bMesh = mesh_.boundaryMesh();
surfZoneList surfZones(bMesh.size()+1);
surfZones[0] = surfZone
(
"internalMesh",
0, // size
0, // start
0 // index
);
forAll(bMesh, patchI)
{
surfZones[patchI+1] = surfZone
(
bMesh[patchI].name(),
0, // size
0, // start
patchI+1 // index
);
}
label nFaces = 0;
label nPoints = 0;
meshCells_.clear();
DynamicList<face> surfFaces(0.5 * mesh_.nFaces());
DynamicList<label> surfCells(surfFaces.size());
labelList oldToNewPoints(origPoints.size(), -1);
// internal faces only
for (label faceI = 0; faceI < mesh_.nInternalFaces(); ++faceI)
{
int side = 0;
// check lowerThreshold
if (field[own[faceI]] > lowerThreshold)
{
if (field[nei[faceI]] < lowerThreshold)
{
side = +1;
}
}
else if (field[nei[faceI]] > lowerThreshold)
{
side = -1;
}
// check upperThreshold
if (field[own[faceI]] < upperThreshold)
{
if (field[nei[faceI]] > upperThreshold)
{
side = +1;
}
}
else if (field[nei[faceI]] < upperThreshold)
{
side = -1;
}
if (side)
{
const face& f = origFaces[faceI];
forAll(f, fp)
{
if (oldToNewPoints[f[fp]] == -1)
{
oldToNewPoints[f[fp]] = nPoints++;
}
}
label cellId;
face surfFace;
if (side > 0)
{
surfFace = f;
cellId = own[faceI];
}
else
{
surfFace = f.reverseFace();
cellId = nei[faceI];
}
if (triangulate)
{
label count = surfFace.triangles(origPoints, surfFaces);
while (count-- > 0)
{
surfCells.append(cellId);
}
}
else
{
surfFaces.append(surfFace);
surfCells.append(cellId);
}
}
}
surfZones[0].size() = surfFaces.size();
// nothing special for processor patches?
forAll(bMesh, patchI)
{
const polyPatch& p = bMesh[patchI];
surfZone& zone = surfZones[patchI+1];
zone.start() = nFaces;
if
(
isA<emptyPolyPatch>(p)
|| (Pstream::parRun() && isA<processorPolyPatch>(p))
)
{
continue;
}
label faceI = p.start();
// patch faces
forAll(p, localFaceI)
{
if
(
field[own[faceI]] > lowerThreshold
&& field[own[faceI]] < upperThreshold
)
{
const face& f = origFaces[faceI];
forAll(f, fp)
{
if (oldToNewPoints[f[fp]] == -1)
{
oldToNewPoints[f[fp]] = nPoints++;
}
}
label cellId = own[faceI];
if (triangulate)
{
label count = f.triangles(origPoints, surfFaces);
while (count-- > 0)
{
surfCells.append(cellId);
}
}
else
{
surfFaces.append(f);
surfCells.append(cellId);
}
}
++faceI;
}
zone.size() = surfFaces.size() - zone.start();
}
surfFaces.shrink();
surfCells.shrink();
// renumber
forAll(surfFaces, faceI)
{
inplaceRenumber(oldToNewPoints, surfFaces[faceI]);
}
pointField surfPoints(nPoints);
nPoints = 0;
forAll(oldToNewPoints, pointI)
{
if (oldToNewPoints[pointI] >= 0)
{
surfPoints[oldToNewPoints[pointI]] = origPoints[pointI];
nPoints++;
}
}
surfPoints.setSize(nPoints);
this->storedPoints().transfer(surfPoints);
this->storedFaces().transfer(surfFaces);
this->storedZones().transfer(surfZones);
meshCells_.transfer(surfCells);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::thresholdCellFaces::thresholdCellFaces
(
const polyMesh& mesh,
const scalarField& field,
const scalar lowerThreshold,
const scalar upperThreshold,
const bool triangulate
)
:
mesh_(mesh)
{
if (lowerThreshold > upperThreshold)
{
WarningIn("thresholdCellFaces::thresholdCellFaces(...)")
<< "lower > upper limit! "
<< lowerThreshold << " > " << upperThreshold << endl;
}
calculate(field, lowerThreshold, upperThreshold, triangulate);
}
// ************************************************************************* //