Files
openfoam/src/OpenFOAM/interpolations/interpolationTable/interpolationTable.C

661 lines
18 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "interpolationTable.H"
#include "IFstream.H"
#include "openFoamTableReader.H"
// * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //
template<class Type>
void Foam::interpolationTable<Type>::readTable()
{
// preserve the original (unexpanded) fileName to avoid absolute paths
// appearing subsequently in the write() method
fileName fName(fileName_);
fName.expand();
// Read data from file
reader_()(fName, *this);
if (this->empty())
{
FatalErrorIn
(
"Foam::interpolationTable<Type>::readTable()"
) << "table read from " << fName << " is empty" << nl
<< exit(FatalError);
}
// Check that the data are okay
check();
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template<class Type>
Foam::interpolationTable<Type>::interpolationTable()
:
List<Tuple2<scalar, Type> >(),
boundsHandling_(interpolationTable::WARN),
fileName_("fileNameIsUndefined"),
reader_(NULL)
{}
template<class Type>
Foam::interpolationTable<Type>::interpolationTable
(
const List<Tuple2<scalar, Type> >& values,
const boundsHandling bounds,
const fileName& fName
)
:
List<Tuple2<scalar, Type> >(values),
boundsHandling_(bounds),
fileName_(fName),
reader_(NULL)
{}
template<class Type>
Foam::interpolationTable<Type>::interpolationTable(const fileName& fName)
:
List<Tuple2<scalar, Type> >(),
boundsHandling_(interpolationTable::WARN),
fileName_(fName),
reader_(new openFoamTableReader<Type>(dictionary()))
{
readTable();
}
template<class Type>
Foam::interpolationTable<Type>::interpolationTable(const dictionary& dict)
:
List<Tuple2<scalar, Type> >(),
boundsHandling_(wordToBoundsHandling(dict.lookup("outOfBounds"))),
fileName_(dict.lookup("fileName")),
reader_(tableReader<Type>::New(dict))
{
readTable();
}
template<class Type>
Foam::interpolationTable<Type>::interpolationTable
(
const interpolationTable& interpTable
)
:
List<Tuple2<scalar, Type> >(interpTable),
boundsHandling_(interpTable.boundsHandling_),
fileName_(interpTable.fileName_),
reader_(interpTable.reader_) // note: steals reader. Used in write().
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class Type>
Foam::word Foam::interpolationTable<Type>::boundsHandlingToWord
(
const boundsHandling& bound
) const
{
word enumName("warn");
switch (bound)
{
case interpolationTable::ERROR:
{
enumName = "error";
break;
}
case interpolationTable::WARN:
{
enumName = "warn";
break;
}
case interpolationTable::CLAMP:
{
enumName = "clamp";
break;
}
case interpolationTable::REPEAT:
{
enumName = "repeat";
break;
}
}
return enumName;
}
template<class Type>
typename Foam::interpolationTable<Type>::boundsHandling
Foam::interpolationTable<Type>::wordToBoundsHandling
(
const word& bound
) const
{
if (bound == "error")
{
return interpolationTable::ERROR;
}
else if (bound == "warn")
{
return interpolationTable::WARN;
}
else if (bound == "clamp")
{
return interpolationTable::CLAMP;
}
else if (bound == "repeat")
{
return interpolationTable::REPEAT;
}
else
{
WarningIn
(
"Foam::interpolationTable<Type>::wordToBoundsHandling(const word&)"
) << "bad outOfBounds specifier " << bound << " using 'warn'" << endl;
return interpolationTable::WARN;
}
}
template<class Type>
typename Foam::interpolationTable<Type>::boundsHandling
Foam::interpolationTable<Type>::outOfBounds
(
const boundsHandling& bound
)
{
boundsHandling prev = boundsHandling_;
boundsHandling_ = bound;
return prev;
}
template<class Type>
void Foam::interpolationTable<Type>::check() const
{
label n = this->size();
scalar prevValue = List<Tuple2<scalar, Type> >::operator[](0).first();
for (label i=1; i<n; ++i)
{
const scalar currValue =
List<Tuple2<scalar, Type> >::operator[](i).first();
// avoid duplicate values (divide-by-zero error)
if (currValue <= prevValue)
{
FatalErrorIn
(
"Foam::interpolationTable<Type>::checkOrder() const"
) << "out-of-order value: "
<< currValue << " at index " << i << nl
<< exit(FatalError);
}
prevValue = currValue;
}
}
template<class Type>
void Foam::interpolationTable<Type>::write(Ostream& os) const
{
os.writeKeyword("fileName")
<< fileName_ << token::END_STATEMENT << nl;
os.writeKeyword("outOfBounds")
<< boundsHandlingToWord(boundsHandling_) << token::END_STATEMENT << nl;
if (reader_.valid())
{
reader_->write(os);
}
}
template<class Type>
Type Foam::interpolationTable<Type>::rateOfChange(const scalar value) const
{
label n = this->size();
if (n <= 1)
{
// There are not enough entries to provide a rate of change
return 0;
}
scalar minLimit = List<Tuple2<scalar, Type> >::operator[](0).first();
scalar maxLimit = List<Tuple2<scalar, Type> >::operator[](n-1).first();
scalar lookupValue = value;
if (lookupValue < minLimit)
{
switch (boundsHandling_)
{
case interpolationTable::ERROR:
{
FatalErrorIn
(
"Foam::interpolationTable<Type>::operator[]"
"(const scalar) const"
) << "value (" << lookupValue << ") underflow" << nl
<< exit(FatalError);
break;
}
case interpolationTable::WARN:
{
WarningIn
(
"Foam::interpolationTable<Type>::operator[]"
"(const scalar) const"
) << "value (" << lookupValue << ") underflow" << nl
<< " Zero rate of change."
<< endl;
// fall-through to 'CLAMP'
}
case interpolationTable::CLAMP:
{
return 0;
break;
}
case interpolationTable::REPEAT:
{
// adjust lookupValue to >= minLimit
scalar span = maxLimit-minLimit;
lookupValue = fmod(lookupValue-minLimit, span) + minLimit;
break;
}
}
}
else if (lookupValue >= maxLimit)
{
switch (boundsHandling_)
{
case interpolationTable::ERROR:
{
FatalErrorIn
(
"Foam::interpolationTable<Type>::operator[]"
"(const label) const"
) << "value (" << lookupValue << ") overflow" << nl
<< exit(FatalError);
break;
}
case interpolationTable::WARN:
{
WarningIn
(
"Foam::interpolationTable<Type>::operator[]"
"(const label) const"
) << "value (" << lookupValue << ") overflow" << nl
<< " Zero rate of change."
<< endl;
// fall-through to 'CLAMP'
}
case interpolationTable::CLAMP:
{
return 0;
break;
}
case interpolationTable::REPEAT:
{
// adjust lookupValue <= maxLimit
scalar span = maxLimit-minLimit;
lookupValue = fmod(lookupValue-minLimit, span) + minLimit;
break;
}
}
}
label lo = 0;
label hi = 0;
// look for the correct range
for (label i = 0; i < n; ++i)
{
if (lookupValue >= List<Tuple2<scalar, Type> >::operator[](i).first())
{
lo = hi = i;
}
else
{
hi = i;
break;
}
}
if (lo == hi)
{
// we are at the end of the table - or there is only a single entry
return 0;
}
else if (hi == 0)
{
// this treatment should should only occur under these conditions:
// -> the 'REPEAT' treatment
// -> (0 <= value <= minLimit)
// -> minLimit > 0
// Use the value at maxLimit as the value for value=0
lo = n - 1;
return
(
(
List<Tuple2<scalar, Type> >::operator[](hi).second()
- List<Tuple2<scalar, Type> >::operator[](lo).second()
)
/(
List<Tuple2<scalar, Type> >::operator[](hi).first()
+ minLimit
- List<Tuple2<scalar, Type> >::operator[](lo).first()
)
);
}
else
{
// normal rate of change
return
(
(
List<Tuple2<scalar, Type> >::operator[](hi).second()
- List<Tuple2<scalar, Type> >::operator[](lo).second()
)
/(
List<Tuple2<scalar, Type> >::operator[](hi).first()
- List<Tuple2<scalar, Type> >::operator[](lo).first()
)
);
}
}
// * * * * * * * * * * * * * * * Member Operators * * * * * * * * * * * * * //
template<class Type>
const Foam::Tuple2<Foam::scalar, Type>&
Foam::interpolationTable<Type>::operator[](const label i) const
{
label ii = i;
label n = this->size();
if (n <= 1)
{
ii = 0;
}
else if (ii < 0)
{
switch (boundsHandling_)
{
case interpolationTable::ERROR:
{
FatalErrorIn
(
"Foam::interpolationTable<Type>::operator[]"
"(const label) const"
) << "index (" << ii << ") underflow" << nl
<< exit(FatalError);
break;
}
case interpolationTable::WARN:
{
WarningIn
(
"Foam::interpolationTable<Type>::operator[]"
"(const label) const"
) << "index (" << ii << ") underflow" << nl
<< " Continuing with the first entry"
<< endl;
// fall-through to 'CLAMP'
}
case interpolationTable::CLAMP:
{
ii = 0;
break;
}
case interpolationTable::REPEAT:
{
while (ii < 0)
{
ii += n;
}
break;
}
}
}
else if (ii >= n)
{
switch (boundsHandling_)
{
case interpolationTable::ERROR:
{
FatalErrorIn
(
"Foam::interpolationTable<Type>::operator[]"
"(const label) const"
) << "index (" << ii << ") overflow" << nl
<< exit(FatalError);
break;
}
case interpolationTable::WARN:
{
WarningIn
(
"Foam::interpolationTable<Type>::operator[]"
"(const label) const"
) << "index (" << ii << ") overflow" << nl
<< " Continuing with the last entry"
<< endl;
// fall-through to 'CLAMP'
}
case interpolationTable::CLAMP:
{
ii = n - 1;
break;
}
case interpolationTable::REPEAT:
{
while (ii >= n)
{
ii -= n;
}
break;
}
}
}
return List<Tuple2<scalar, Type> >::operator[](ii);
}
template<class Type>
Type Foam::interpolationTable<Type>::operator()(const scalar value) const
{
label n = this->size();
if (n <= 1)
{
return List<Tuple2<scalar, Type> >::operator[](0).second();
}
scalar minLimit = List<Tuple2<scalar, Type> >::operator[](0).first();
scalar maxLimit = List<Tuple2<scalar, Type> >::operator[](n-1).first();
scalar lookupValue = value;
if (lookupValue < minLimit)
{
switch (boundsHandling_)
{
case interpolationTable::ERROR:
{
FatalErrorIn
(
"Foam::interpolationTable<Type>::operator[]"
"(const scalar) const"
) << "value (" << lookupValue << ") underflow" << nl
<< exit(FatalError);
break;
}
case interpolationTable::WARN:
{
WarningIn
(
"Foam::interpolationTable<Type>::operator[]"
"(const scalar) const"
) << "value (" << lookupValue << ") underflow" << nl
<< " Continuing with the first entry"
<< endl;
// fall-through to 'CLAMP'
}
case interpolationTable::CLAMP:
{
return List<Tuple2<scalar, Type> >::operator[](0).second();
break;
}
case interpolationTable::REPEAT:
{
// adjust lookupValue to >= minLimit
scalar span = maxLimit-minLimit;
lookupValue = fmod(lookupValue-minLimit, span) + minLimit;
break;
}
}
}
else if (lookupValue >= maxLimit)
{
switch (boundsHandling_)
{
case interpolationTable::ERROR:
{
FatalErrorIn
(
"Foam::interpolationTable<Type>::operator[]"
"(const label) const"
) << "value (" << lookupValue << ") overflow" << nl
<< exit(FatalError);
break;
}
case interpolationTable::WARN:
{
WarningIn
(
"Foam::interpolationTable<Type>::operator[]"
"(const label) const"
) << "value (" << lookupValue << ") overflow" << nl
<< " Continuing with the last entry"
<< endl;
// fall-through to 'CLAMP'
}
case interpolationTable::CLAMP:
{
return List<Tuple2<scalar, Type> >::operator[](n-1).second();
break;
}
case interpolationTable::REPEAT:
{
// adjust lookupValue <= maxLimit
scalar span = maxLimit-minLimit;
lookupValue = fmod(lookupValue-minLimit, span) + minLimit;
break;
}
}
}
label lo = 0;
label hi = 0;
// look for the correct range
for (label i = 0; i < n; ++i)
{
if (lookupValue >= List<Tuple2<scalar, Type> >::operator[](i).first())
{
lo = hi = i;
}
else
{
hi = i;
break;
}
}
if (lo == hi)
{
// we are at the end of the table - or there is only a single entry
return List<Tuple2<scalar, Type> >::operator[](hi).second();
}
else if (hi == 0)
{
// this treatment should should only occur under these conditions:
// -> the 'REPEAT' treatment
// -> (0 <= value <= minLimit)
// -> minLimit > 0
// Use the value at maxLimit as the value for value=0
lo = n - 1;
return
(
List<Tuple2<scalar, Type> >::operator[](lo).second()
+ (
List<Tuple2<scalar, Type> >::operator[](hi).second()
- List<Tuple2<scalar, Type> >::operator[](lo).second()
)
*(lookupValue / minLimit)
);
}
else
{
// normal interpolation
return
(
List<Tuple2<scalar, Type> >::operator[](lo).second()
+ (
List<Tuple2<scalar, Type> >::operator[](hi).second()
- List<Tuple2<scalar, Type> >::operator[](lo).second()
)
*(
lookupValue
- List<Tuple2<scalar, Type> >::operator[](lo).first()
)
/(
List<Tuple2<scalar, Type> >::operator[](hi).first()
- List<Tuple2<scalar, Type> >::operator[](lo).first()
)
);
}
}
// ************************************************************************* //