Files
openfoam/applications/solvers/multiphase/multiphaseEulerFoam/multiphaseSystem/multiphaseSystem.C
Sergio Ferraris 5437b9b599 INT: Org integration of VOF, Euler phase solvers and models.
Integration of VOF MULES new interfaces. Update of VOF solvers and all instances
of MULES in the code.
Integration of reactingTwoPhaseEuler and reactingMultiphaseEuler solvers and sub-models
Updating reactingEuler tutorials accordingly (most of them tested)

New eRefConst thermo used in tutorials. Some modifications at thermo specie level
affecting mostly eThermo. hThermo mostly unaffected

New chtMultiRegionTwoPhaseEulerFoam solver for quenching and tutorial.

Phases sub-models for reactingTwoPhaseEuler and reactingMultiphaseEuler were moved
to src/phaseSystemModels/reactingEulerFoam in order to be used by BC for
chtMultiRegionTwoPhaseEulerFoam.

Update of interCondensatingEvaporatingFoam solver.
2019-06-07 09:38:35 +01:00

947 lines
23 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd |
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2011-2018 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "multiphaseSystem.H"
#include "alphaContactAngleFvPatchScalarField.H"
#include "fixedValueFvsPatchFields.H"
#include "Time.H"
#include "subCycle.H"
#include "MULES.H"
#include "surfaceInterpolate.H"
#include "fvcGrad.H"
#include "fvcSnGrad.H"
#include "fvcDiv.H"
#include "fvcFlux.H"
#include "fvcAverage.H"
// * * * * * * * * * * * * * * * Static Member Data * * * * * * * * * * * * //
const Foam::scalar Foam::multiphaseSystem::convertToRad =
Foam::constant::mathematical::pi/180.0;
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::multiphaseSystem::calcAlphas()
{
scalar level = 0.0;
alphas_ == 0.0;
for (const phaseModel& phase : phases_)
{
alphas_ += level * phase;
level += 1.0;
}
}
void Foam::multiphaseSystem::solveAlphas()
{
PtrList<surfaceScalarField> alphaPhiCorrs(phases_.size());
int phasei = 0;
for (phaseModel& phase : phases_)
{
volScalarField& alpha1 = phase;
alphaPhiCorrs.set
(
phasei,
new surfaceScalarField
(
"phi" + alpha1.name() + "Corr",
fvc::flux
(
phi_,
phase,
"div(phi," + alpha1.name() + ')'
)
)
);
surfaceScalarField& alphaPhiCorr = alphaPhiCorrs[phasei];
for (phaseModel& phase2 : phases_)
{
volScalarField& alpha2 = phase2;
if (&phase2 == &phase) continue;
surfaceScalarField phir(phase.phi() - phase2.phi());
const auto cAlpha = cAlphas_.cfind(interfacePair(phase, phase2));
if (cAlpha.found())
{
surfaceScalarField phic
(
(mag(phi_) + mag(phir))/mesh_.magSf()
);
phir += min(cAlpha()*phic, max(phic))*nHatf(phase, phase2);
}
const word phirScheme
(
"div(phir," + alpha2.name() + ',' + alpha1.name() + ')'
);
alphaPhiCorr += fvc::flux
(
-fvc::flux(-phir, phase2, phirScheme),
phase,
phirScheme
);
}
phase.correctInflowOutflow(alphaPhiCorr);
MULES::limit
(
1.0/mesh_.time().deltaT().value(),
geometricOneField(),
phase,
phi_,
alphaPhiCorr,
zeroField(),
zeroField(),
oneField(),
zeroField(),
true
);
++phasei;
}
MULES::limitSum(alphaPhiCorrs);
volScalarField sumAlpha
(
IOobject
(
"sumAlpha",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar("sumAlpha", dimless, 0)
);
phasei = 0;
for (phaseModel& phase : phases_)
{
surfaceScalarField& alphaPhi = alphaPhiCorrs[phasei];
alphaPhi += upwind<scalar>(mesh_, phi_).flux(phase);
phase.correctInflowOutflow(alphaPhi);
MULES::explicitSolve
(
geometricOneField(),
phase,
alphaPhi
);
phase.alphaPhi() = alphaPhi;
Info<< phase.name() << " volume fraction, min, max = "
<< phase.weightedAverage(mesh_.V()).value()
<< ' ' << min(phase).value()
<< ' ' << max(phase).value()
<< endl;
sumAlpha += phase;
++phasei;
}
Info<< "Phase-sum volume fraction, min, max = "
<< sumAlpha.weightedAverage(mesh_.V()).value()
<< ' ' << min(sumAlpha).value()
<< ' ' << max(sumAlpha).value()
<< endl;
// Correct the sum of the phase-fractions to avoid 'drift'
volScalarField sumCorr(1.0 - sumAlpha);
for (phaseModel& phase : phases_)
{
volScalarField& alpha = phase;
alpha += alpha*sumCorr;
}
calcAlphas();
}
Foam::tmp<Foam::surfaceVectorField> Foam::multiphaseSystem::nHatfv
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const
{
/*
// Cell gradient of alpha
volVectorField gradAlpha =
alpha2*fvc::grad(alpha1) - alpha1*fvc::grad(alpha2);
// Interpolated face-gradient of alpha
surfaceVectorField gradAlphaf = fvc::interpolate(gradAlpha);
*/
surfaceVectorField gradAlphaf
(
fvc::interpolate(alpha2)*fvc::interpolate(fvc::grad(alpha1))
- fvc::interpolate(alpha1)*fvc::interpolate(fvc::grad(alpha2))
);
// Face unit interface normal
return gradAlphaf/(mag(gradAlphaf) + deltaN_);
}
Foam::tmp<Foam::surfaceScalarField> Foam::multiphaseSystem::nHatf
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const
{
// Face unit interface normal flux
return nHatfv(alpha1, alpha2) & mesh_.Sf();
}
// Correction for the boundary condition on the unit normal nHat on
// walls to produce the correct contact angle.
// The dynamic contact angle is calculated from the component of the
// velocity on the direction of the interface, parallel to the wall.
void Foam::multiphaseSystem::correctContactAngle
(
const phaseModel& phase1,
const phaseModel& phase2,
surfaceVectorField::Boundary& nHatb
) const
{
const volScalarField::Boundary& gbf
= phase1.boundaryField();
const fvBoundaryMesh& boundary = mesh_.boundary();
forAll(boundary, patchi)
{
if (isA<alphaContactAngleFvPatchScalarField>(gbf[patchi]))
{
const alphaContactAngleFvPatchScalarField& acap =
refCast<const alphaContactAngleFvPatchScalarField>(gbf[patchi]);
vectorField& nHatPatch = nHatb[patchi];
vectorField AfHatPatch
(
mesh_.Sf().boundaryField()[patchi]
/mesh_.magSf().boundaryField()[patchi]
);
const auto tp =
acap.thetaProps().cfind(interfacePair(phase1, phase2));
if (!tp.found())
{
FatalErrorInFunction
<< "Cannot find interface " << interfacePair(phase1, phase2)
<< "\n in table of theta properties for patch "
<< acap.patch().name()
<< exit(FatalError);
}
bool matched = (tp.key().first() == phase1.name());
scalar theta0 = convertToRad*tp().theta0(matched);
scalarField theta(boundary[patchi].size(), theta0);
scalar uTheta = tp().uTheta();
// Calculate the dynamic contact angle if required
if (uTheta > SMALL)
{
scalar thetaA = convertToRad*tp().thetaA(matched);
scalar thetaR = convertToRad*tp().thetaR(matched);
// Calculated the component of the velocity parallel to the wall
vectorField Uwall
(
phase1.U().boundaryField()[patchi].patchInternalField()
- phase1.U().boundaryField()[patchi]
);
Uwall -= (AfHatPatch & Uwall)*AfHatPatch;
// Find the direction of the interface parallel to the wall
vectorField nWall
(
nHatPatch - (AfHatPatch & nHatPatch)*AfHatPatch
);
// Normalise nWall
nWall /= (mag(nWall) + SMALL);
// Calculate Uwall resolved normal to the interface parallel to
// the interface
scalarField uwall(nWall & Uwall);
theta += (thetaA - thetaR)*tanh(uwall/uTheta);
}
// Reset nHatPatch to correspond to the contact angle
scalarField a12(nHatPatch & AfHatPatch);
scalarField b1(cos(theta));
scalarField b2(nHatPatch.size());
forAll(b2, facei)
{
b2[facei] = cos(acos(a12[facei]) - theta[facei]);
}
scalarField det(1.0 - a12*a12);
scalarField a((b1 - a12*b2)/det);
scalarField b((b2 - a12*b1)/det);
nHatPatch = a*AfHatPatch + b*nHatPatch;
nHatPatch /= (mag(nHatPatch) + deltaN_.value());
}
}
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::K
(
const phaseModel& phase1,
const phaseModel& phase2
) const
{
tmp<surfaceVectorField> tnHatfv = nHatfv(phase1, phase2);
correctContactAngle(phase1, phase2, tnHatfv.ref().boundaryFieldRef());
// Simple expression for curvature
return -fvc::div(tnHatfv & mesh_.Sf());
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::multiphaseSystem::multiphaseSystem
(
const volVectorField& U,
const surfaceScalarField& phi
)
:
IOdictionary
(
IOobject
(
"transportProperties",
U.time().constant(),
U.db(),
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
),
phases_(lookup("phases"), phaseModel::iNew(U.mesh())),
mesh_(U.mesh()),
phi_(phi),
alphas_
(
IOobject
(
"alphas",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh_,
dimensionedScalar("alphas", dimless, 0.0)
),
sigmas_(lookup("sigmas")),
dimSigma_(1, 0, -2, 0, 0),
cAlphas_(lookup("interfaceCompression")),
Cvms_(lookup("virtualMass")),
deltaN_
(
"deltaN",
1e-8/cbrt(average(mesh_.V()))
)
{
calcAlphas();
alphas_.write();
interfaceDictTable dragModelsDict(lookup("drag"));
forAllConstIters(dragModelsDict, iter)
{
dragModels_.set
(
iter.key(),
dragModel::New
(
iter(),
*phases_.lookup(iter.key().first()),
*phases_.lookup(iter.key().second())
).ptr()
);
}
for (const phaseModel& phase1 : phases_)
{
for (const phaseModel& phase2 : phases_)
{
if (&phase2 == &phase1)
{
continue;
}
const interfacePair key(phase1, phase2);
if (sigmas_.found(key) && !cAlphas_.found(key))
{
WarningInFunction
<< "Compression coefficient not specified for phase pair ("
<< phase1.name() << ' ' << phase2.name()
<< ") for which a surface tension coefficient is specified"
<< endl;
}
}
}
}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::rho() const
{
auto iter = phases_.cbegin();
tmp<volScalarField> trho = iter()*iter().rho();
volScalarField& rho = trho.ref();
for (++iter; iter != phases_.cend(); ++iter)
{
rho += iter()*iter().rho();
}
return trho;
}
Foam::tmp<Foam::scalarField>
Foam::multiphaseSystem::rho(const label patchi) const
{
auto iter = phases_.cbegin();
tmp<scalarField> trho = iter().boundaryField()[patchi]*iter().rho().value();
scalarField& rho = trho.ref();
for (++iter; iter != phases_.cend(); ++iter)
{
rho += iter().boundaryField()[patchi]*iter().rho().value();
}
return trho;
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::nu() const
{
auto iter = phases_.cbegin();
tmp<volScalarField> tmu = iter()*(iter().rho()*iter().nu());
volScalarField& mu = tmu.ref();
for (++iter; iter != phases_.cend(); ++iter)
{
mu += iter()*(iter().rho()*iter().nu());
}
return tmu/rho();
}
Foam::tmp<Foam::scalarField>
Foam::multiphaseSystem::nu(const label patchi) const
{
auto iter = phases_.cbegin();
tmp<scalarField> tmu =
iter().boundaryField()[patchi]
*(iter().rho().value()*iter().nu().value());
scalarField& mu = tmu.ref();
for (++iter; iter != phases_.cend(); ++iter)
{
mu +=
iter().boundaryField()[patchi]
*(iter().rho().value()*iter().nu().value());
}
return tmu/rho(patchi);
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::Cvm
(
const phaseModel& phase
) const
{
tmp<volScalarField> tCvm
(
new volScalarField
(
IOobject
(
"Cvm",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar(dimDensity, Zero)
)
);
for (const phaseModel& phase2 : phases_)
{
if (&phase2 == &phase)
{
continue;
}
auto iterCvm = Cvms_.cfind(interfacePair(phase, phase2));
if (iterCvm.found())
{
tCvm.ref() += iterCvm()*phase2.rho()*phase2;
}
else
{
iterCvm = Cvms_.cfind(interfacePair(phase2, phase));
if (iterCvm.found())
{
tCvm.ref() += iterCvm()*phase.rho()*phase2;
}
}
}
return tCvm;
}
Foam::tmp<Foam::volVectorField> Foam::multiphaseSystem::Svm
(
const phaseModel& phase
) const
{
tmp<volVectorField> tSvm
(
new volVectorField
(
IOobject
(
"Svm",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedVector
(
"Svm",
dimensionSet(1, -2, -2, 0, 0),
Zero
)
)
);
for (const phaseModel& phase2 : phases_)
{
if (&phase2 == &phase)
{
continue;
}
auto Cvm = Cvms_.cfind(interfacePair(phase, phase2));
if (Cvm.found())
{
tSvm.ref() += Cvm()*phase2.rho()*phase2*phase2.DDtU();
}
else
{
Cvm = Cvms_.cfind(interfacePair(phase2, phase));
if (Cvm.found())
{
tSvm.ref() += Cvm()*phase.rho()*phase2*phase2.DDtU();
}
}
}
volVectorField::Boundary& SvmBf =
tSvm.ref().boundaryFieldRef();
// Remove virtual mass at fixed-flux boundaries
forAll(phase.phi().boundaryField(), patchi)
{
if
(
isA<fixedValueFvsPatchScalarField>
(
phase.phi().boundaryField()[patchi]
)
)
{
SvmBf[patchi] = Zero;
}
}
return tSvm;
}
Foam::autoPtr<Foam::multiphaseSystem::dragCoeffFields>
Foam::multiphaseSystem::dragCoeffs() const
{
autoPtr<dragCoeffFields> dragCoeffsPtr(new dragCoeffFields);
forAllConstIters(dragModels_, iter)
{
const dragModel& dm = *iter();
volScalarField* Kptr =
(
max
(
// fvc::average(dm.phase1()*dm.phase2()),
// fvc::average(dm.phase1())*fvc::average(dm.phase2()),
dm.phase1()*dm.phase2(),
dm.residualPhaseFraction()
)
*dm.K
(
max
(
mag(dm.phase1().U() - dm.phase2().U()),
dm.residualSlip()
)
)
).ptr();
volScalarField::Boundary& Kbf = Kptr->boundaryFieldRef();
// Remove drag at fixed-flux boundaries
forAll(dm.phase1().phi().boundaryField(), patchi)
{
if
(
isA<fixedValueFvsPatchScalarField>
(
dm.phase1().phi().boundaryField()[patchi]
)
)
{
Kbf[patchi] = 0.0;
}
}
dragCoeffsPtr().set(iter.key(), Kptr);
}
return dragCoeffsPtr;
}
Foam::tmp<Foam::volScalarField> Foam::multiphaseSystem::dragCoeff
(
const phaseModel& phase,
const dragCoeffFields& dragCoeffs
) const
{
tmp<volScalarField> tdragCoeff
(
new volScalarField
(
IOobject
(
"dragCoeff",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar
(
"dragCoeff",
dimensionSet(1, -3, -1, 0, 0),
0
)
)
);
dragModelTable::const_iterator dmIter = dragModels_.begin();
dragCoeffFields::const_iterator dcIter = dragCoeffs.begin();
for
(
;
dmIter.good() && dcIter.good();
++dmIter, ++dcIter
)
{
if
(
&phase == &dmIter()->phase1()
|| &phase == &dmIter()->phase2()
)
{
tdragCoeff.ref() += *dcIter();
}
}
return tdragCoeff;
}
Foam::tmp<Foam::surfaceScalarField> Foam::multiphaseSystem::surfaceTension
(
const phaseModel& phase1
) const
{
tmp<surfaceScalarField> tSurfaceTension
(
new surfaceScalarField
(
IOobject
(
"surfaceTension",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar
(
"surfaceTension",
dimensionSet(1, -2, -2, 0, 0),
0
)
)
);
tSurfaceTension.ref().setOriented();
for (const phaseModel& phase2 : phases_)
{
if (&phase2 == &phase1)
{
continue;
}
const auto sigma = sigmas_.cfind(interfacePair(phase1, phase2));
if (sigma.found())
{
tSurfaceTension.ref() +=
dimensionedScalar("sigma", dimSigma_, *sigma)
*fvc::interpolate(K(phase1, phase2))*
(
fvc::interpolate(phase2)*fvc::snGrad(phase1)
- fvc::interpolate(phase1)*fvc::snGrad(phase2)
);
}
}
return tSurfaceTension;
}
Foam::tmp<Foam::volScalarField>
Foam::multiphaseSystem::nearInterface() const
{
tmp<volScalarField> tnearInt
(
new volScalarField
(
IOobject
(
"nearInterface",
mesh_.time().timeName(),
mesh_
),
mesh_,
dimensionedScalar("nearInterface", dimless, 0.0)
)
);
for (const phaseModel& phase : phases_)
{
tnearInt.ref() =
max(tnearInt(), pos0(phase - 0.01)*pos0(0.99 - phase));
}
return tnearInt;
}
void Foam::multiphaseSystem::solve()
{
for (phaseModel& phase : phases_)
{
phase.correct();
}
const Time& runTime = mesh_.time();
const dictionary& alphaControls = mesh_.solverDict("alpha");
label nAlphaSubCycles(readLabel(alphaControls.lookup("nAlphaSubCycles")));
if (nAlphaSubCycles > 1)
{
dimensionedScalar totalDeltaT = runTime.deltaT();
PtrList<volScalarField> alpha0s(phases_.size());
PtrList<surfaceScalarField> alphaPhiSums(phases_.size());
label phasei = 0;
for (phaseModel& phase : phases_)
{
volScalarField& alpha = phase;
alpha0s.set
(
phasei,
new volScalarField(alpha.oldTime())
);
alphaPhiSums.set
(
phasei,
new surfaceScalarField
(
IOobject
(
"phiSum" + alpha.name(),
runTime.timeName(),
mesh_
),
mesh_,
dimensionedScalar("0", dimensionSet(0, 3, -1, 0, 0), 0)
)
);
++phasei;
}
for
(
subCycleTime alphaSubCycle
(
const_cast<Time&>(runTime),
nAlphaSubCycles
);
!(++alphaSubCycle).end();
)
{
solveAlphas();
label phasei = 0;
for (const phaseModel& phase : phases_)
{
alphaPhiSums[phasei] += phase.alphaPhi()/nAlphaSubCycles;
++phasei;
}
}
phasei = 0;
for (phaseModel& phase : phases_)
{
volScalarField& alpha = phase;
phase.alphaPhi() = alphaPhiSums[phasei];
// Correct the time index of the field
// to correspond to the global time
alpha.timeIndex() = runTime.timeIndex();
// Reset the old-time field value
alpha.oldTime() = alpha0s[phasei];
alpha.oldTime().timeIndex() = runTime.timeIndex();
++phasei;
}
}
else
{
solveAlphas();
}
}
bool Foam::multiphaseSystem::read()
{
if (regIOobject::read())
{
bool readOK = true;
PtrList<entry> phaseData(lookup("phases"));
label phasei = 0;
for (phaseModel& phase : phases_)
{
readOK &= phase.read(phaseData[phasei++].dict());
}
lookup("sigmas") >> sigmas_;
lookup("interfaceCompression") >> cAlphas_;
lookup("virtualMass") >> Cvms_;
return readOK;
}
else
{
return false;
}
}
// ************************************************************************* //