Files
openfoam/src/finiteVolume/interpolation/surfaceInterpolation/schemes/linearFit/linearFitData.C

372 lines
9.3 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2007 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
\*---------------------------------------------------------------------------*/
#include "linearFitData.H"
#include "surfaceFields.H"
#include "volFields.H"
#include "SVD.H"
#include "syncTools.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(linearFitData, 0);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
static int count = 0;
Foam::linearFitData::linearFitData
(
const fvMesh& mesh,
const scalar cWeight
)
:
MeshObject<fvMesh, linearFitData>(mesh),
centralWeight_(cWeight),
# ifdef SPHERICAL_GEOMETRY
dim_(2),
# else
dim_(mesh.nGeometricD()),
# endif
minSize_
(
dim_ == 1 ? 2 :
dim_ == 2 ? 3 :
dim_ == 3 ? 4 : 0
),
stencil_(mesh),
fit_(mesh.nInternalFaces())
{
if (debug)
{
Info << "Contructing linearFitData" << endl;
}
// check input
if (centralWeight_ < 1 - SMALL)
{
FatalErrorIn("linearFitData::linearFitData")
<< "centralWeight requested = " << centralWeight_
<< " should not be less than one"
<< exit(FatalError);
}
if (minSize_ == 0)
{
FatalErrorIn("linearFitSnGradData")
<< " dimension must be 1,2 or 3, not" << dim_ << exit(FatalError);
}
// store the polynomial size for each cell to write out
surfaceScalarField interpPolySize
(
IOobject
(
"linearFitInterpPolySize",
"constant",
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("linearFitInterpPolySize", dimless, scalar(0))
);
// Get the cell/face centres in stencil order.
// Centred face stencils no good for triangles of tets. Need bigger stencils
List<List<point> > stencilPoints(stencil_.stencil().size());
stencil_.collectData
(
mesh.C(),
stencilPoints
);
// find the fit coefficients for every face in the mesh
for(label faci = 0; faci < mesh.nInternalFaces(); faci++)
{
interpPolySize[faci] = calcFit(stencilPoints[faci], faci);
}
Pout<< "count = " << count << endl;
if (debug)
{
Info<< "linearFitData::linearFitData() :"
<< "Finished constructing polynomialFit data"
<< endl;
interpPolySize.write();
}
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::linearFitData::findFaceDirs
(
vector& idir, // value changed in return
vector& jdir, // value changed in return
vector& kdir, // value changed in return
const fvMesh& mesh,
const label faci
)
{
idir = mesh.Sf()[faci];
//idir = mesh.C()[mesh.neighbour()[faci]] - mesh.C()[mesh.owner()[faci]];
idir /= mag(idir);
# ifndef SPHERICAL_GEOMETRY
if (mesh.nGeometricD() <= 2) // find the normal direcion
{
if (mesh.directions()[0] == -1)
{
kdir = vector(1, 0, 0);
}
else if (mesh.directions()[1] == -1)
{
kdir = vector(0, 1, 0);
}
else
{
kdir = vector(0, 0, 1);
}
}
else // 3D so find a direction in the place of the face
{
const face& f = mesh.faces()[faci];
kdir = mesh.points()[f[0]] - mesh.points()[f[1]];
}
# else
// Spherical geometry so kdir is the radial direction
kdir = mesh.Cf()[faci];
# endif
if (mesh.nGeometricD() == 3)
{
// Remove the idir component from kdir and normalise
kdir -= (idir & kdir)*idir;
scalar magk = mag(kdir);
if (magk < SMALL)
{
FatalErrorIn("findFaceDirs") << " calculated kdir = zero"
<< exit(FatalError);
}
else
{
kdir /= magk;
}
}
jdir = kdir ^ idir;
}
Foam::label Foam::linearFitData::calcFit
(
const List<point>& C,
const label faci
)
{
vector idir(1,0,0);
vector jdir(0,1,0);
vector kdir(0,0,1);
findFaceDirs(idir, jdir, kdir, mesh(), faci);
scalarList wts(C.size(), scalar(1));
wts[0] = centralWeight_;
wts[1] = centralWeight_;
point p0 = mesh().faceCentres()[faci];
scalar scale = 0;
// calculate the matrix of the polynomial components
scalarRectangularMatrix B(C.size(), minSize_, scalar(0));
for(label ip = 0; ip < C.size(); ip++)
{
const point& p = C[ip];
scalar px = (p - p0)&idir;
scalar py = (p - p0)&jdir;
# ifndef SPHERICAL_GEOMETRY
scalar pz = (p - p0)&kdir;
# else
scalar pz = mag(p) - mag(p0);
# endif
if (ip == 0)
{
scale = max(max(mag(px), mag(py)), mag(pz));
}
px /= scale;
py /= scale;
pz /= scale;
label is = 0;
B[ip][is++] = wts[0]*wts[ip];
B[ip][is++] = wts[0]*wts[ip]*px;
if (dim_ >= 2)
{
B[ip][is++] = wts[ip]*py;
}
if (dim_ == 3)
{
B[ip][is++] = wts[ip]*pz;
}
}
// Set the fit
label stencilSize = C.size();
fit_[faci].setSize(stencilSize);
scalarList singVals(minSize_);
label nSVDzeros = 0;
const GeometricField<scalar, fvsPatchField, surfaceMesh>& w =
mesh().surfaceInterpolation::weights();
bool goodFit = false;
for(int iIt = 0; iIt < 10 && !goodFit; iIt++)
{
SVD svd(B, SMALL);
scalar fit0 = wts[0]*wts[0]*svd.VSinvUt()[0][0];
scalar fit1 = wts[0]*wts[1]*svd.VSinvUt()[0][1];
//goodFit = (fit0 > 0 && fit1 > 0);
goodFit =
(mag(fit0 - w[faci])/w[faci] < 0.5)
&& (mag(fit1 - (1 - w[faci]))/(1 - w[faci]) < 0.5);
//scalar w0Err = fit0/w[faci];
//scalar w1Err = fit1/(1 - w[faci]);
//goodFit =
// (w0Err > 0.5 && w0Err < 1.5)
// && (w1Err > 0.5 && w1Err < 1.5);
if (goodFit)
{
fit_[faci][0] = fit0;
fit_[faci][1] = fit1;
for(label i=2; i<stencilSize; i++)
{
fit_[faci][i] = wts[0]*wts[i]*svd.VSinvUt()[0][i];
}
singVals = svd.S();
nSVDzeros = svd.nZeros();
}
else // (not good fit so increase weight in the centre and for linear)
{
wts[0] *= 10;
wts[1] *= 10;
for(label i = 0; i < B.n(); i++)
{
B[i][0] *= 10;
B[i][1] *= 10;
}
for(label j = 0; j < B.m(); j++)
{
B[0][j] *= 10;
B[1][j] *= 10;
}
}
}
// static const scalar L = 0.1;
// static const scalar R = 0.2;
// static const scalar beta = 1.0/(R - L);
// static const scalar alpha = R*beta;
if (goodFit)
{
if ((mag(fit_[faci][0] - w[faci])/w[faci] < 0.15)
&& (mag(fit_[faci][1] - (1 - w[faci]))/(1 - w[faci]) < 0.15))
{
count++;
//Pout<< "fit " << mag(fit_[faci][0] - w[faci])/w[faci] << " " << mag(fit_[faci][1] - (1 - w[faci]))/(1 - w[faci]) << endl;
}
// scalar limiter =
// max
// (
// min
// (
// min(alpha - beta*mag(fit_[faci][0] - w[faci])/w[faci], 1),
// min(alpha - beta*mag(fit_[faci][1] - (1 - w[faci]))/(1 - w[faci]), 1)
// ), 0
// );
// Remove the uncorrected linear coefficients
fit_[faci][0] -= w[faci];
fit_[faci][1] -= 1 - w[faci];
// if (limiter < 0.99)
// {
// for(label i = 0; i < stencilSize; i++)
// {
// fit_[faci][i] *= limiter;
// }
// }
}
else
{
Pout<< "Could not fit face " << faci
<< " " << fit_[faci][0] << " " << w[faci]
<< " " << fit_[faci][1] << " " << 1 - w[faci]<< endl;
fit_[faci] = 0;
}
return minSize_ - nSVDzeros;
}
bool Foam::linearFitData::movePoints()
{
notImplemented("linearFitData::movePoints()");
return true;
}
// ************************************************************************* //