mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-12-28 03:37:59 +00:00
- A negative expansion ratio is geometrically invalid and will
normally cause issues (FatalError).
However, we can trap this type of input and interpret it as the
inverse expansion ratio - ie, the expansion ratio in the opposite
direction. This can be especially convenient when generating a blockMesh
with a symmetrical expansion. It permits using the same expansion
ratio (with a sign change) instead of providing the reciprocal values
manually.
COMP: revert demand-driven point creation in blockMesh (db9b35b50d)
- appears to have caused a dangling reference on some systems
ENH: add a lightweight ijkAddressing class
- it can be used for an i-j-k to linear lookup of meshes or fields,
where applicable.
368 lines
10 KiB
C
368 lines
10 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 2019 OpenCFD Ltd.
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
| Copyright (C) 2016 OpenFOAM Foundation
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "projectFace.H"
|
|
#include "unitConversion.H"
|
|
#include "addToRunTimeSelectionTable.H"
|
|
#include "blockDescriptor.H"
|
|
#include "OBJstream.H"
|
|
#include "linearInterpolationWeights.H"
|
|
|
|
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
|
|
|
|
namespace Foam
|
|
{
|
|
namespace blockFaces
|
|
{
|
|
defineTypeNameAndDebug(projectFace, 0);
|
|
addToRunTimeSelectionTable(blockFace, projectFace, Istream);
|
|
}
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
|
|
|
|
const Foam::searchableSurface& Foam::blockFaces::projectFace::lookupSurface
|
|
(
|
|
const searchableSurfaces& geometry,
|
|
Istream& is
|
|
) const
|
|
{
|
|
const word name(is);
|
|
|
|
for (const searchableSurface& geom : geometry)
|
|
{
|
|
if (geom.name() == name)
|
|
{
|
|
return geom;
|
|
}
|
|
}
|
|
|
|
FatalIOErrorInFunction(is)
|
|
<< "Cannot find surface " << name << " in geometry"
|
|
<< exit(FatalIOError);
|
|
|
|
return geometry[0];
|
|
}
|
|
|
|
|
|
Foam::label Foam::blockFaces::projectFace::index
|
|
(
|
|
const labelPair& n,
|
|
const labelPair& coord
|
|
)
|
|
{
|
|
return coord.first() + coord.second()*n.first();
|
|
}
|
|
|
|
|
|
void Foam::blockFaces::projectFace::calcLambdas
|
|
(
|
|
const labelPair& n,
|
|
const pointField& points,
|
|
scalarField& lambdaI,
|
|
scalarField& lambdaJ
|
|
) const
|
|
{
|
|
lambdaI.setSize(points.size());
|
|
lambdaI = 0.0;
|
|
lambdaJ.setSize(points.size());
|
|
lambdaJ = 0.0;
|
|
|
|
for (label i = 1; i < n.first(); i++)
|
|
{
|
|
for (label j = 1; j < n.second(); j++)
|
|
{
|
|
label ij = index(n, labelPair(i, j));
|
|
label iMin1j = index(n, labelPair(i-1, j));
|
|
lambdaI[ij] = lambdaI[iMin1j] + mag(points[ij]-points[iMin1j]);
|
|
|
|
label ijMin1 = index(n, labelPair(i, j-1));
|
|
lambdaJ[ij] = lambdaJ[ijMin1] + mag(points[ij]-points[ijMin1]);
|
|
}
|
|
}
|
|
|
|
for (label i = 1; i < n.first(); i++)
|
|
{
|
|
label ijLast = index(n, labelPair(i, n.second()-1));
|
|
for (label j = 1; j < n.second(); j++)
|
|
{
|
|
label ij = index(n, labelPair(i, j));
|
|
lambdaJ[ij] /= lambdaJ[ijLast];
|
|
}
|
|
}
|
|
for (label j = 1; j < n.second(); j++)
|
|
{
|
|
label iLastj = index(n, labelPair(n.first()-1, j));
|
|
for (label i = 1; i < n.first(); i++)
|
|
{
|
|
label ij = index(n, labelPair(i, j));
|
|
lambdaI[ij] /= lambdaI[iLastj];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
|
|
|
Foam::blockFaces::projectFace::projectFace
|
|
(
|
|
const dictionary& dict,
|
|
const label index,
|
|
const searchableSurfaces& geometry,
|
|
Istream& is
|
|
)
|
|
:
|
|
blockFace(dict, index, is),
|
|
surface_(lookupSurface(geometry, is))
|
|
{}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
|
|
|
|
void Foam::blockFaces::projectFace::project
|
|
(
|
|
const blockDescriptor& desc,
|
|
const label blockFacei,
|
|
pointField& points
|
|
) const
|
|
{
|
|
// For debugging to tag the output
|
|
static label fIter = 0;
|
|
|
|
autoPtr<OBJstream> debugStr;
|
|
if (debug)
|
|
{
|
|
debugStr.reset
|
|
(
|
|
new OBJstream("projectFace_" + Foam::name(fIter++) + ".obj")
|
|
);
|
|
Info<< "Face:" << blockFacei << " on block:" << desc.blockShape()
|
|
<< " with verts:" << desc.vertices()
|
|
<< " writing lines from start points"
|
|
<< " to projected points to " << debugStr().name() << endl;
|
|
}
|
|
|
|
|
|
// Find out range of vertices in face
|
|
labelPair n(-1, -1);
|
|
switch (blockFacei)
|
|
{
|
|
case 0:
|
|
case 1:
|
|
{
|
|
n.first() = desc.density().y() + 1;
|
|
n.second() = desc.density().z() + 1;
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
case 3:
|
|
{
|
|
n.first() = desc.density().x() + 1;
|
|
n.second() = desc.density().z() + 1;
|
|
}
|
|
break;
|
|
|
|
case 4:
|
|
case 5:
|
|
{
|
|
n.first() = desc.density().x() + 1;
|
|
n.second() = desc.density().y() + 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
// Calculate initial normalised edge lengths (= u,v coordinates)
|
|
scalarField lambdaI(points.size(), Zero);
|
|
scalarField lambdaJ(points.size(), Zero);
|
|
calcLambdas(n, points, lambdaI, lambdaJ);
|
|
|
|
|
|
// Upper limit for number of iterations
|
|
const label maxIter = 10;
|
|
// Residual tolerance
|
|
const scalar relTol = 0.1;
|
|
|
|
scalar initialResidual = 0.0;
|
|
scalar iResidual = 0.0;
|
|
scalar jResidual = 0.0;
|
|
|
|
for (label iter = 0; iter < maxIter; iter++)
|
|
{
|
|
// Do projection
|
|
{
|
|
List<pointIndexHit> hits;
|
|
scalarField nearestDistSqr
|
|
(
|
|
points.size(),
|
|
magSqr(points[0] - points[points.size()-1])
|
|
);
|
|
surface_.findNearest(points, nearestDistSqr, hits);
|
|
|
|
forAll(hits, i)
|
|
{
|
|
if (hits[i].hit())
|
|
{
|
|
const point& hitPt = hits[i].hitPoint();
|
|
if (debugStr.valid())
|
|
{
|
|
debugStr().write(linePointRef(points[i], hitPt));
|
|
}
|
|
points[i] = hitPt;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (debug)
|
|
{
|
|
Pout<< "Iter:" << iter << " initialResidual:" << initialResidual
|
|
<< " iResidual+jResidual:" << iResidual+jResidual << endl;
|
|
}
|
|
|
|
|
|
if (iter > 0 && (iResidual+jResidual)/initialResidual < relTol)
|
|
{
|
|
break;
|
|
}
|
|
|
|
|
|
// Predict along i
|
|
vectorField residual(points.size(), Zero);
|
|
|
|
// Work arrays for interpolation
|
|
labelList indices;
|
|
scalarField weights;
|
|
for (label j = 1; j < n.second()-1; j++)
|
|
{
|
|
// Calculate actual lamdba along constant j line
|
|
scalarField projLambdas(n.first());
|
|
projLambdas[0] = 0.0;
|
|
for (label i = 1; i < n.first(); i++)
|
|
{
|
|
label ij = index(n, labelPair(i, j));
|
|
label iMin1j = index(n, labelPair(i-1, j));
|
|
projLambdas[i] =
|
|
projLambdas[i-1]
|
|
+mag(points[ij]-points[iMin1j]);
|
|
}
|
|
projLambdas /= projLambdas.last();
|
|
|
|
linearInterpolationWeights interpolator(projLambdas);
|
|
|
|
for (label i = 1; i < n.first()-1; i++)
|
|
{
|
|
label ij = index(n, labelPair(i, j));
|
|
|
|
interpolator.valueWeights(lambdaI[ij], indices, weights);
|
|
|
|
point predicted(Zero);
|
|
forAll(indices, indexi)
|
|
{
|
|
label ptIndex = index(n, labelPair(indices[indexi], j));
|
|
predicted += weights[indexi]*points[ptIndex];
|
|
}
|
|
residual[ij] = predicted-points[ij];
|
|
}
|
|
}
|
|
|
|
if (debugStr.valid())
|
|
{
|
|
forAll(points, i)
|
|
{
|
|
const point predicted(points[i] + residual[i]);
|
|
debugStr().write(linePointRef(points[i], predicted));
|
|
}
|
|
}
|
|
|
|
iResidual = sum(mag(residual));
|
|
|
|
// Update points before doing j. Note: is this needed? Complicates
|
|
// residual checking.
|
|
points += residual;
|
|
|
|
|
|
// Predict along j
|
|
residual = vector::zero;
|
|
for (label i = 1; i < n.first()-1; i++)
|
|
{
|
|
// Calculate actual lamdba along constant i line
|
|
scalarField projLambdas(n.second());
|
|
projLambdas[0] = 0.0;
|
|
for (label j = 1; j < n.second(); j++)
|
|
{
|
|
label ij = index(n, labelPair(i, j));
|
|
label ijMin1 = index(n, labelPair(i, j-1));
|
|
projLambdas[j] =
|
|
projLambdas[j-1]
|
|
+mag(points[ij]-points[ijMin1]);
|
|
}
|
|
|
|
projLambdas /= projLambdas.last();
|
|
|
|
linearInterpolationWeights interpolator(projLambdas);
|
|
|
|
for (label j = 1; j < n.second()-1; j++)
|
|
{
|
|
label ij = index(n, labelPair(i, j));
|
|
|
|
interpolator.valueWeights(lambdaJ[ij], indices, weights);
|
|
|
|
point predicted(Zero);
|
|
forAll(indices, indexi)
|
|
{
|
|
label ptIndex = index(n, labelPair(i, indices[indexi]));
|
|
predicted += weights[indexi]*points[ptIndex];
|
|
}
|
|
residual[ij] = predicted-points[ij];
|
|
}
|
|
}
|
|
|
|
if (debugStr.valid())
|
|
{
|
|
forAll(points, i)
|
|
{
|
|
const point predicted(points[i] + residual[i]);
|
|
debugStr().write(linePointRef(points[i], predicted));
|
|
}
|
|
}
|
|
|
|
jResidual = sum(mag(residual));
|
|
|
|
if (iter == 0)
|
|
{
|
|
initialResidual = iResidual + jResidual;
|
|
}
|
|
|
|
points += residual;
|
|
}
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|