Files
openfoam/src/parallel/decompose/decompositionMethods/decompositionMethod/decompositionMethod.C
2010-04-30 15:10:10 +01:00

615 lines
15 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
InClass
decompositionMethod
\*---------------------------------------------------------------------------*/
#include "decompositionMethod.H"
#include "globalIndex.H"
#include "cyclicPolyPatch.H"
#include "syncTools.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(decompositionMethod, 0);
defineRunTimeSelectionTable(decompositionMethod, dictionary);
defineRunTimeSelectionTable(decompositionMethod, dictionaryMesh);
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::autoPtr<Foam::decompositionMethod> Foam::decompositionMethod::New
(
const dictionary& decompositionDict
)
{
const word methodType(decompositionDict.lookup("method"));
Info<< "Selecting decompositionMethod " << methodType << endl;
dictionaryConstructorTable::iterator cstrIter =
dictionaryConstructorTablePtr_->find(methodType);
if (cstrIter == dictionaryConstructorTablePtr_->end())
{
FatalErrorIn
(
"decompositionMethod::New"
"(const dictionary& decompositionDict)"
) << "Unknown decompositionMethod "
<< methodType << nl << nl
<< "Valid decompositionMethods are : " << endl
<< dictionaryConstructorTablePtr_->sortedToc()
<< exit(FatalError);
}
return autoPtr<decompositionMethod>(cstrIter()(decompositionDict));
}
Foam::autoPtr<Foam::decompositionMethod> Foam::decompositionMethod::New
(
const dictionary& decompositionDict,
const polyMesh& mesh
)
{
const word methodType(decompositionDict.lookup("method"));
Info<< "Selecting decompositionMethod " << methodType << endl;
dictionaryMeshConstructorTable::iterator cstrIter =
dictionaryMeshConstructorTablePtr_->find(methodType);
if (cstrIter == dictionaryMeshConstructorTablePtr_->end())
{
FatalErrorIn
(
"decompositionMethod::New"
"(const dictionary& decompositionDict, "
"const polyMesh& mesh)"
) << "Unknown decompositionMethod "
<< methodType << nl << nl
<< "Valid decompositionMethods are : " << endl
<< dictionaryMeshConstructorTablePtr_->sortedToc()
<< exit(FatalError);
}
return autoPtr<decompositionMethod>(cstrIter()(decompositionDict, mesh));
}
Foam::labelList Foam::decompositionMethod::decompose
(
const pointField& points
)
{
scalarField weights(0);
return decompose(points, weights);
}
Foam::labelList Foam::decompositionMethod::decompose
(
const labelList& fineToCoarse,
const pointField& coarsePoints,
const scalarField& coarseWeights
)
{
// Decompose based on agglomerated points
labelList coarseDistribution(decompose(coarsePoints, coarseWeights));
// Rework back into decomposition for original mesh_
labelList fineDistribution(fineToCoarse.size());
forAll(fineDistribution, i)
{
fineDistribution[i] = coarseDistribution[fineToCoarse[i]];
}
return fineDistribution;
}
Foam::labelList Foam::decompositionMethod::decompose
(
const labelList& fineToCoarse,
const pointField& coarsePoints
)
{
// Decompose based on agglomerated points
labelList coarseDistribution(decompose(coarsePoints));
// Rework back into decomposition for original mesh_
labelList fineDistribution(fineToCoarse.size());
forAll(fineDistribution, i)
{
fineDistribution[i] = coarseDistribution[fineToCoarse[i]];
}
return fineDistribution;
}
Foam::labelList Foam::decompositionMethod::decompose
(
const labelListList& globalCellCells,
const pointField& cc
)
{
scalarField cWeights(0);
return decompose(globalCellCells, cc, cWeights);
}
void Foam::decompositionMethod::calcCellCells
(
const polyMesh& mesh,
const labelList& fineToCoarse,
const label nCoarse,
labelListList& cellCells
)
{
if (fineToCoarse.size() != mesh.nCells())
{
FatalErrorIn
(
"decompositionMethod::calcCellCells"
"(const labelList&, labelListList&) const"
) << "Only valid for mesh agglomeration." << exit(FatalError);
}
List<DynamicList<label> > dynCellCells(nCoarse);
forAll(mesh.faceNeighbour(), faceI)
{
label own = fineToCoarse[mesh.faceOwner()[faceI]];
label nei = fineToCoarse[mesh.faceNeighbour()[faceI]];
if (own != nei)
{
if (findIndex(dynCellCells[own], nei) == -1)
{
dynCellCells[own].append(nei);
}
if (findIndex(dynCellCells[nei], own) == -1)
{
dynCellCells[nei].append(own);
}
}
}
cellCells.setSize(dynCellCells.size());
forAll(dynCellCells, coarseI)
{
cellCells[coarseI].transfer(dynCellCells[coarseI]);
}
}
// Return the minimum face between two cells. Only relevant for
// cells with multiple faces inbetween.
Foam::label Foam::decompositionMethod::masterFace
(
const polyMesh& mesh,
const label own,
const label nei
)
{
label minFaceI = labelMax;
// Count multiple faces between own and nei only once
const cell& ownFaces = mesh.cells()[own];
forAll(ownFaces, i)
{
label otherFaceI = ownFaces[i];
if (mesh.isInternalFace(otherFaceI))
{
label nbrCellI =
(
mesh.faceNeighbour()[otherFaceI] != own
? mesh.faceNeighbour()[otherFaceI]
: mesh.faceOwner()[otherFaceI]
);
if (nbrCellI == nei)
{
minFaceI = min(minFaceI, otherFaceI);
}
}
}
return minFaceI;
}
void Foam::decompositionMethod::calcCSR
(
const polyMesh& mesh,
List<int>& adjncy,
List<int>& xadj
)
{
const polyBoundaryMesh& pbm = mesh.boundaryMesh();
// Make Metis CSR (Compressed Storage Format) storage
// adjncy : contains neighbours (= edges in graph)
// xadj(celli) : start of information in adjncy for celli
// Count unique faces between cells
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
labelList nFacesPerCell(mesh.nCells(), 0);
// Internal faces
for (label faceI = 0; faceI < mesh.nInternalFaces(); faceI++)
{
label own = mesh.faceOwner()[faceI];
label nei = mesh.faceNeighbour()[faceI];
if (faceI == masterFace(mesh, own, nei))
{
nFacesPerCell[own]++;
nFacesPerCell[nei]++;
}
}
// Coupled faces. Only cyclics done.
HashSet<edge, Hash<edge> > cellPair(mesh.nFaces()-mesh.nInternalFaces());
forAll(pbm, patchI)
{
if
(
isA<cyclicPolyPatch>(pbm[patchI])
&& refCast<const cyclicPolyPatch>(pbm[patchI]).owner()
)
{
const cyclicPolyPatch& cycPatch = refCast<const cyclicPolyPatch>
(
pbm[patchI]
);
const unallocLabelList& faceCells = cycPatch.faceCells();
const unallocLabelList& nbrCells =
cycPatch.neighbPatch().faceCells();
forAll(faceCells, facei)
{
label own = faceCells[facei];
label nei = nbrCells[facei];
if (cellPair.insert(edge(own, nei)))
{
nFacesPerCell[own]++;
nFacesPerCell[nei]++;
}
}
}
}
// Size tables
// ~~~~~~~~~~~
// Sum nFacesPerCell
xadj.setSize(mesh.nCells()+1);
label nConnections = 0;
for (label cellI = 0; cellI < mesh.nCells(); cellI++)
{
xadj[cellI] = nConnections;
nConnections += nFacesPerCell[cellI];
}
xadj[mesh.nCells()] = nConnections;
adjncy.setSize(nConnections);
// Fill tables
// ~~~~~~~~~~~
nFacesPerCell = 0;
// Internal faces
for (label faceI = 0; faceI < mesh.nInternalFaces(); faceI++)
{
label own = mesh.faceOwner()[faceI];
label nei = mesh.faceNeighbour()[faceI];
if (faceI == masterFace(mesh, own, nei))
{
adjncy[xadj[own] + nFacesPerCell[own]++] = nei;
adjncy[xadj[nei] + nFacesPerCell[nei]++] = own;
}
}
// Coupled faces. Only cyclics done.
cellPair.clear();
forAll(pbm, patchI)
{
if
(
isA<cyclicPolyPatch>(pbm[patchI])
&& refCast<const cyclicPolyPatch>(pbm[patchI]).owner()
)
{
const cyclicPolyPatch& cycPatch = refCast<const cyclicPolyPatch>
(
pbm[patchI]
);
const unallocLabelList& faceCells = cycPatch.faceCells();
const unallocLabelList& nbrCells =
cycPatch.neighbPatch().faceCells();
forAll(faceCells, facei)
{
label own = faceCells[facei];
label nei = nbrCells[facei];
if (cellPair.insert(edge(own, nei)))
{
adjncy[xadj[own] + nFacesPerCell[own]++] = nei;
adjncy[xadj[nei] + nFacesPerCell[nei]++] = own;
}
}
}
}
}
// From cell-cell connections to Metis format (like CompactListList)
void Foam::decompositionMethod::calcCSR
(
const labelListList& cellCells,
List<int>& adjncy,
List<int>& xadj
)
{
labelHashSet nbrCells;
// Count number of internal faces
label nConnections = 0;
forAll(cellCells, coarseI)
{
nbrCells.clear();
const labelList& cCells = cellCells[coarseI];
forAll(cCells, i)
{
if (nbrCells.insert(cCells[i]))
{
nConnections++;
}
}
}
// Create the adjncy array as twice the size of the total number of
// internal faces
adjncy.setSize(nConnections);
xadj.setSize(cellCells.size()+1);
// Fill in xadj
// ~~~~~~~~~~~~
label freeAdj = 0;
forAll(cellCells, coarseI)
{
xadj[coarseI] = freeAdj;
nbrCells.clear();
const labelList& cCells = cellCells[coarseI];
forAll(cCells, i)
{
if (nbrCells.insert(cCells[i]))
{
adjncy[freeAdj++] = cCells[i];
}
}
}
xadj[cellCells.size()] = freeAdj;
}
void Foam::decompositionMethod::calcDistributedCSR
(
const polyMesh& mesh,
List<int>& adjncy,
List<int>& xadj
)
{
// Create global cell numbers
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
globalIndex globalCells(mesh.nCells());
//
// Make Metis Distributed CSR (Compressed Storage Format) storage
// adjncy : contains cellCells (= edges in graph)
// xadj(celli) : start of information in adjncy for celli
//
const labelList& faceOwner = mesh.faceOwner();
const labelList& faceNeighbour = mesh.faceNeighbour();
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Get renumbered owner on other side of coupled faces
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
List<int> globalNeighbour(mesh.nFaces()-mesh.nInternalFaces());
forAll(patches, patchI)
{
const polyPatch& pp = patches[patchI];
if (pp.coupled())
{
label faceI = pp.start();
label bFaceI = pp.start() - mesh.nInternalFaces();
forAll(pp, i)
{
globalNeighbour[bFaceI++] = globalCells.toGlobal
(
faceOwner[faceI++]
);
}
}
}
// Get the cell on the other side of coupled patches
syncTools::swapBoundaryFaceList(mesh, globalNeighbour);
// Count number of faces (internal + coupled)
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Number of faces per cell
List<int> nFacesPerCell(mesh.nCells(), 0);
for (label faceI = 0; faceI < mesh.nInternalFaces(); faceI++)
{
label own = faceOwner[faceI];
label nei = faceNeighbour[faceI];
if (faceI == masterFace(mesh, own, nei))
{
nFacesPerCell[own]++;
nFacesPerCell[nei]++;
}
}
// Handle coupled faces
HashSet<edge, Hash<edge> > cellPair(mesh.nFaces()-mesh.nInternalFaces());
forAll(patches, patchI)
{
const polyPatch& pp = patches[patchI];
if (pp.coupled())
{
label faceI = pp.start();
label bFaceI = pp.start()-mesh.nInternalFaces();
forAll(pp, i)
{
label own = faceOwner[faceI];
label globalNei = globalNeighbour[bFaceI];
if (cellPair.insert(edge(own, globalNei)))
{
nFacesPerCell[own]++;
}
faceI++;
bFaceI++;
}
}
}
// Fill in xadj
// ~~~~~~~~~~~~
xadj.setSize(mesh.nCells()+1);
int freeAdj = 0;
for (label cellI = 0; cellI < mesh.nCells(); cellI++)
{
xadj[cellI] = freeAdj;
freeAdj += nFacesPerCell[cellI];
}
xadj[mesh.nCells()] = freeAdj;
// Fill in adjncy
// ~~~~~~~~~~~~~~
adjncy.setSize(freeAdj);
nFacesPerCell = 0;
// For internal faces is just offsetted owner and neighbour
for (label faceI = 0; faceI < mesh.nInternalFaces(); faceI++)
{
label own = faceOwner[faceI];
label nei = faceNeighbour[faceI];
if (faceI == masterFace(mesh, own, nei))
{
adjncy[xadj[own] + nFacesPerCell[own]++] =
globalCells.toGlobal(nei);
adjncy[xadj[nei] + nFacesPerCell[nei]++] =
globalCells.toGlobal(own);
}
}
// For boundary faces is offsetted coupled neighbour
cellPair.clear();
forAll(patches, patchI)
{
const polyPatch& pp = patches[patchI];
if (pp.coupled())
{
label faceI = pp.start();
label bFaceI = pp.start()-mesh.nInternalFaces();
forAll(pp, i)
{
label own = faceOwner[faceI];
label globalNei = globalNeighbour[bFaceI];
if (cellPair.insert(edge(own, globalNei)))
{
adjncy[xadj[own] + nFacesPerCell[own]++] = globalNei;
}
faceI++;
bFaceI++;
}
}
}
}
// ************************************************************************* //