Files
openfoam/applications/solvers/multiphase/reactingEulerFoam/functionObjects/sizeDistribution/sizeDistribution.C
Sergio Ferraris 8170f2ad92 INT: Org integration of VOF, Euler phase solvers and models.
Integration of VOF MULES new interfaces. Update of VOF solvers and all instances
of MULES in the code.
Integration of reactingTwoPhaseEuler and reactingMultiphaseEuler solvers and sub-models
Updating reactingEuler tutorials accordingly (most of them tested)

New eRefConst thermo used in tutorials. Some modifications at thermo specie level
affecting mostly eThermo. hThermo mostly unaffected

New chtMultiRegionTwoPhaseEulerFoam solver for quenching and tutorial.

Phases sub-models for reactingTwoPhaseEuler and reactingMultiphaseEuler were moved
to src/phaseSystemModels/reactingEulerFoam in order to be used by BC for
chtMultiRegionTwoPhaseEulerFoam.

Update of interCondensatingEvaporatingFoam solver.
2019-06-07 09:38:35 +01:00

586 lines
14 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration | Website: https://openfoam.org
\\ / A nd | Copyright (C) 2017-2019 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "sizeDistribution.H"
#include "sizeGroup.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
namespace functionObjects
{
defineTypeNameAndDebug(sizeDistribution, 0);
addToRunTimeSelectionTable(functionObject, sizeDistribution, dictionary);
}
}
const Foam::Enum
<
Foam::functionObjects::sizeDistribution::selectionModeTypes
>
Foam::functionObjects::sizeDistribution::selectionModeTypeNames_
({
{selectionModeTypes::rtCellZone, "cellZone"},
{selectionModeTypes::rtAll, "all"},
});
const Foam::Enum
<
Foam::functionObjects::sizeDistribution::functionTypes
>
Foam::functionObjects::sizeDistribution::functionTypeNames_
({
{functionTypes::ftNdf, "numberDensity"},
{functionTypes::ftVdf, "volumeDensity"},
{functionTypes::ftNc, "numberConcentration"},
{functionTypes::ftMom, "moments"},
});
const Foam::Enum
<
Foam::functionObjects::sizeDistribution::abszissaTypes
>
Foam::functionObjects::sizeDistribution::abszissaTypeNames_
({
{abszissaTypes::atDiameter, "diameter"},
{abszissaTypes::atVolume, "volume"},
});
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
void Foam::functionObjects::sizeDistribution::initialise
(
const dictionary& dict
)
{
switch (functionType_)
{
case ftNdf:
{
break;
}
case ftVdf:
{
break;
}
case ftNc:
{
break;
}
case ftMom:
{
break;
}
default:
{
FatalIOErrorInFunction(dict)
<< "Unknown functionType. Valid types are:"
<< functionTypeNames_ << nl << exit(FatalIOError);
}
}
switch (abszissaType_)
{
case atDiameter:
{
break;
}
case atVolume:
{
break;
}
default:
{
FatalIOErrorInFunction(dict)
<< "Unknown abszissaType. Valid types are:"
<< abszissaTypeNames_ << nl << exit(FatalIOError);
}
}
setCellZoneCells();
if (nCells_ == 0)
{
FatalIOErrorInFunction(dict)
<< type() << " " << name() << ": "
<< selectionModeTypeNames_[selectionModeType_]
<< "(" << selectionModeTypeName_ << "):" << nl
<< " Selection has no cells" << exit(FatalIOError);
}
volume_ = volume();
Info<< type() << " " << name() << ":"
<< selectionModeTypeNames_[selectionModeType_]
<< "(" << selectionModeTypeName_ << "):" << nl
<< " total cells = " << nCells_ << nl
<< " total volume = " << volume_
<< nl << endl;
}
void Foam::functionObjects::sizeDistribution::setCellZoneCells()
{
switch (selectionModeType_)
{
case rtCellZone:
{
dict().lookup("cellZone") >> selectionModeTypeName_;
label zoneId =
mesh().cellZones().findZoneID(selectionModeTypeName_);
if (zoneId < 0)
{
FatalIOErrorInFunction(dict_)
<< "Unknown cellZone name: " << selectionModeTypeName_
<< ". Valid cellZone names are: "
<< mesh().cellZones().names()
<< nl << exit(FatalIOError);
}
cellId_ = mesh().cellZones()[zoneId];
nCells_ = returnReduce(cellId_.size(), sumOp<label>());
break;
}
case rtAll:
{
cellId_ = identity(mesh().nCells());
nCells_ = returnReduce(cellId_.size(), sumOp<label>());
break;
}
default:
{
FatalIOErrorInFunction(dict_)
<< "Unknown selectionMode type. Valid selectionMode types are:"
<< selectionModeTypeNames_ << nl << exit(FatalIOError);
}
}
}
Foam::scalar Foam::functionObjects::sizeDistribution::volume() const
{
return gSum(filterField(mesh().V()));
}
void Foam::functionObjects::sizeDistribution::combineFields(scalarField& field)
{
List<scalarField> allValues(Pstream::nProcs());
allValues[Pstream::myProcNo()] = field;
Pstream::gatherList(allValues);
if (Pstream::master())
{
field =
ListListOps::combine<scalarField>
(
allValues,
accessOp<scalarField>()
);
}
}
Foam::tmp<Foam::scalarField>
Foam::functionObjects::sizeDistribution::filterField
(
const scalarField& field
) const
{
return tmp<scalarField>(new scalarField(field, cellId_));
}
void Foam::functionObjects::sizeDistribution::writeFileHeader
(
const label i
)
{
OFstream& file = this->file();
switch (functionType_)
{
case ftNdf:
{
writeHeader(file, "Number density function");
break;
}
case ftVdf:
{
writeHeader(file, "Volume density function");
break;
}
case ftNc:
{
writeHeader(file, "Number concentration");
break;
}
case ftMom:
{
writeHeader(file, "Moments");
break;
}
}
switch (abszissaType_)
{
case atVolume:
{
writeCommented(file, "Time/volume");
break;
}
case atDiameter:
{
writeCommented(file, "Time/diameter");
break;
}
}
switch (functionType_)
{
case ftMom:
{
for (label i = 0; i <= momentOrder_; i++)
{
file() << tab << i;
}
break;
}
default:
{
forAll(popBal_.sizeGroups(), sizeGroupi)
{
const diameterModels::sizeGroup& fi =
popBal_.sizeGroups()[sizeGroupi];
switch (abszissaType_)
{
case atDiameter:
{
file() << tab << fi.d().value();
break;
}
case atVolume:
{
file() << tab << fi.x().value();
break;
}
}
}
break;
}
}
file << endl;
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::functionObjects::sizeDistribution::sizeDistribution
(
const word& name,
const Time& runTime,
const dictionary& dict
)
:
fvMeshFunctionObject(name, runTime, dict),
writeFile(obr_, name),
dict_(dict),
selectionModeType_
(
selectionModeTypeNames_.get("selectionMode", dict)
),
selectionModeTypeName_(word::null),
functionType_(functionTypeNames_.get("functionType", dict)),
abszissaType_(abszissaTypeNames_.get("abszissaType", dict)),
nCells_(0),
cellId_(),
volume_(0.0),
writeVolume_(dict.lookupOrDefault("writeVolume", false)),
popBal_
(
obr_.lookupObject<Foam::diameterModels::populationBalanceModel>
(
dict.get<word>("populationBalance")
)
),
N_(popBal_.sizeGroups().size()),
momentOrder_(dict.lookupOrDefault<label>("momentOrder", 0)),
normalize_(dict.lookupOrDefault("normalize", false)),
sumN_(0.0),
sumV_(0.0)
{
read(dict);
resetFile(name);
createFile(name);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::functionObjects::sizeDistribution::~sizeDistribution()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::functionObjects::sizeDistribution::read(const dictionary& dict)
{
if (dict != dict_)
{
dict_ = dict;
}
fvMeshFunctionObject::read(dict);
writeFile::read(dict);
initialise(dict);
return true;
}
bool Foam::functionObjects::sizeDistribution::execute()
{
return true;
}
bool Foam::functionObjects::sizeDistribution::write()
{
writeFileHeader();
writeTime(file());
Log << type() << " " << name() << " write" << nl;
scalarField V(filterField(mesh().V()));
combineFields(V);
sumN_ = 0;
sumV_ = 0;
forAll(N_, i)
{
const Foam::diameterModels::sizeGroup& fi = popBal_.sizeGroups()[i];
const volScalarField& alpha = fi.VelocityGroup().phase();
scalarField Ni(fi*alpha/fi.x());
scalarField values(filterField(Ni));
scalarField V(filterField(mesh().V()));
// Combine onto master
combineFields(values);
combineFields(V);
if (Pstream::master())
{
// Calculate volume-averaged number concentration
N_[i] = sum(V*values)/sum(V);
}
sumN_ += N_[i];
sumV_ += N_[i]*fi.x().value();
}
if (Pstream::master())
{
switch (functionType_)
{
case ftMom:
{
for (label m = 0; m <= momentOrder_; m++)
{
scalar result(0.0);
forAll(N_, i)
{
const Foam::diameterModels::sizeGroup& fi =
popBal_.sizeGroups()[i];
switch (abszissaType_)
{
case atVolume:
{
result += pow(fi.x().value(), m)*N_[i];
break;
}
case atDiameter:
{
result += pow(fi.d().value(), m)*N_[i];
break;
}
}
}
file() << tab << result;
}
break;
}
default:
{
forAll(popBal_.sizeGroups(), i)
{
const Foam::diameterModels::sizeGroup& fi =
popBal_.sizeGroups()[i];
scalar result(0.0);
scalar delta(0.0);
switch (abszissaType_)
{
case atVolume:
{
delta = popBal_.v()[i+1].value()
- popBal_.v()[i].value();
break;
}
case atDiameter:
{
const scalar& formFactor =
fi.VelocityGroup().formFactor().value();
delta =
pow
(
popBal_.v()[i+1].value()
/formFactor,
1.0/3.0
)
- pow
(
popBal_.v()[i].value()
/formFactor,
1.0/3.0
);
break;
}
}
switch (functionType_)
{
case ftNdf:
{
if (normalize_ == true)
{
result = N_[i]/delta/sumN_;
}
else
{
result = N_[i]/delta;
}
break;
}
case ftVdf:
{
if (normalize_ == true)
{
result = N_[i]*fi.x().value()/delta/sumV_;
}
else
{
result = N_[i]*fi.x().value()/delta;
}
break;
}
case ftNc:
{
if (normalize_ == true)
{
result = N_[i]/sumN_;
}
else
{
result = N_[i];
}
break;
}
default:
{
break;
}
}
file()<< tab << result;
}
}
}
}
{
file()<< endl;
}
Log << endl;
return true;
}
// ************************************************************************* //