Files
openfoam/src/finiteVolume/fvMesh/fvMesh.C
2009-06-09 14:02:25 +01:00

669 lines
16 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
\*---------------------------------------------------------------------------*/
#include "fvMesh.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "slicedVolFields.H"
#include "slicedSurfaceFields.H"
#include "SubField.H"
#include "demandDrivenData.H"
#include "fvMeshLduAddressing.H"
#include "emptyPolyPatch.H"
#include "mapPolyMesh.H"
#include "MapFvFields.H"
#include "fvMeshMapper.H"
#include "mapClouds.H"
#include "volPointInterpolation.H"
#include "extendedLeastSquaresVectors.H"
#include "extendedLeastSquaresVectors.H"
#include "leastSquaresVectors.H"
#include "CentredFitData.H"
#include "linearFitPolynomial.H"
#include "quadraticFitPolynomial.H"
#include "quadraticLinearFitPolynomial.H"
#include "quadraticFitSnGradData.H"
#include "skewCorrectionVectors.H"
#include "centredCECCellToFaceStencilObject.H"
#include "centredCFCCellToFaceStencilObject.H"
#include "centredCPCCellToFaceStencilObject.H"
#include "centredFECCellToFaceStencilObject.H"
#include "upwindCECCellToFaceStencilObject.H"
#include "upwindCFCCellToFaceStencilObject.H"
#include "upwindCPCCellToFaceStencilObject.H"
#include "upwindFECCellToFaceStencilObject.H"
#include "centredCFCFaceToCellStencilObject.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
defineTypeNameAndDebug(Foam::fvMesh, 0);
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::fvMesh::clearGeomNotOldVol()
{
slicedVolScalarField::DimensionedInternalField* VPtr =
static_cast<slicedVolScalarField::DimensionedInternalField*>(VPtr_);
deleteDemandDrivenData(VPtr);
VPtr_ = NULL;
deleteDemandDrivenData(SfPtr_);
deleteDemandDrivenData(magSfPtr_);
deleteDemandDrivenData(CPtr_);
deleteDemandDrivenData(CfPtr_);
}
void Foam::fvMesh::clearGeom()
{
clearGeomNotOldVol();
deleteDemandDrivenData(V0Ptr_);
deleteDemandDrivenData(V00Ptr_);
// Mesh motion flux cannot be deleted here because the old-time flux
// needs to be saved.
// Things geometry dependent that are not updated.
volPointInterpolation::Delete(*this);
extendedLeastSquaresVectors::Delete(*this);
leastSquaresVectors::Delete(*this);
CentredFitData<linearFitPolynomial>::Delete(*this);
CentredFitData<quadraticFitPolynomial>::Delete(*this);
CentredFitData<quadraticLinearFitPolynomial>::Delete(*this);
skewCorrectionVectors::Delete(*this);
quadraticFitSnGradData::Delete(*this);
}
void Foam::fvMesh::clearAddressing()
{
deleteDemandDrivenData(lduPtr_);
// Hack until proper callbacks. Below are all the fvMesh-MeshObjects.
volPointInterpolation::Delete(*this);
extendedLeastSquaresVectors::Delete(*this);
leastSquaresVectors::Delete(*this);
CentredFitData<linearFitPolynomial>::Delete(*this);
CentredFitData<quadraticFitPolynomial>::Delete(*this);
CentredFitData<quadraticLinearFitPolynomial>::Delete(*this);
skewCorrectionVectors::Delete(*this);
quadraticFitSnGradData::Delete(*this);
centredCECCellToFaceStencilObject::Delete(*this);
centredCFCCellToFaceStencilObject::Delete(*this);
centredCPCCellToFaceStencilObject::Delete(*this);
centredFECCellToFaceStencilObject::Delete(*this);
// Is this geometry related - cells distorting to upwind direction?
upwindCECCellToFaceStencilObject::Delete(*this);
upwindCFCCellToFaceStencilObject::Delete(*this);
upwindCPCCellToFaceStencilObject::Delete(*this);
upwindFECCellToFaceStencilObject::Delete(*this);
centredCFCFaceToCellStencilObject::Delete(*this);
}
void Foam::fvMesh::clearOut()
{
clearGeom();
surfaceInterpolation::clearOut();
clearAddressing();
// Clear mesh motion flux
deleteDemandDrivenData(phiPtr_);
polyMesh::clearOut();
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::fvMesh::fvMesh(const IOobject& io)
:
polyMesh(io),
surfaceInterpolation(*this),
boundary_(*this, boundaryMesh()),
lduPtr_(NULL),
curTimeIndex_(time().timeIndex()),
VPtr_(NULL),
V0Ptr_(NULL),
V00Ptr_(NULL),
SfPtr_(NULL),
magSfPtr_(NULL),
CPtr_(NULL),
CfPtr_(NULL),
phiPtr_(NULL)
{
if (debug)
{
Info<< "Constructing fvMesh from IOobject"
<< endl;
}
// Check the existance of the cell volumes and read if present
// and set the storage of V00
if (isFile(time().timePath()/"V0"))
{
V0Ptr_ = new DimensionedField<scalar, volMesh>
(
IOobject
(
"V0",
time().timeName(),
*this,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
*this
);
V00();
}
// Check the existance of the mesh fluxes, read if present and set the
// mesh to be moving
if (isFile(time().timePath()/"meshPhi"))
{
phiPtr_ = new surfaceScalarField
(
IOobject
(
"meshPhi",
time().timeName(),
*this,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
*this
);
// The mesh is now considered moving so the old-time cell volumes
// will be required for the time derivatives so if they haven't been
// read initialise to the current cell volumes
if (!V0Ptr_)
{
V0Ptr_ = new DimensionedField<scalar, volMesh>
(
IOobject
(
"V0",
time().timeName(),
*this,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
V()
);
}
moving(true);
}
}
Foam::fvMesh::fvMesh
(
const IOobject& io,
const Xfer<pointField>& points,
const Xfer<faceList>& faces,
const Xfer<labelList>& allOwner,
const Xfer<labelList>& allNeighbour,
const bool syncPar
)
:
polyMesh(io, points, faces, allOwner, allNeighbour, syncPar),
surfaceInterpolation(*this),
boundary_(*this),
lduPtr_(NULL),
curTimeIndex_(time().timeIndex()),
VPtr_(NULL),
V0Ptr_(NULL),
V00Ptr_(NULL),
SfPtr_(NULL),
magSfPtr_(NULL),
CPtr_(NULL),
CfPtr_(NULL),
phiPtr_(NULL)
{
if (debug)
{
Info<< "Constructing fvMesh from components" << endl;
}
}
Foam::fvMesh::fvMesh
(
const IOobject& io,
const Xfer<pointField>& points,
const Xfer<faceList>& faces,
const Xfer<cellList>& cells,
const bool syncPar
)
:
polyMesh(io, points, faces, cells, syncPar),
surfaceInterpolation(*this),
boundary_(*this),
lduPtr_(NULL),
curTimeIndex_(time().timeIndex()),
VPtr_(NULL),
V0Ptr_(NULL),
V00Ptr_(NULL),
SfPtr_(NULL),
magSfPtr_(NULL),
CPtr_(NULL),
CfPtr_(NULL),
phiPtr_(NULL)
{
if (debug)
{
Info<< "Constructing fvMesh from components" << endl;
}
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
Foam::fvMesh::~fvMesh()
{
clearOut();
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::fvMesh::addFvPatches
(
const List<polyPatch*> & p,
const bool validBoundary
)
{
if (boundary().size())
{
FatalErrorIn
(
"fvMesh::addFvPatches(const List<polyPatch*>&, const bool)"
) << " boundary already exists"
<< abort(FatalError);
}
// first add polyPatches
addPatches(p, validBoundary);
boundary_.addPatches(boundaryMesh());
}
void Foam::fvMesh::removeFvBoundary()
{
if (debug)
{
Info<< "void fvMesh::removeFvBoundary(): "
<< "Removing boundary patches."
<< endl;
}
// Remove fvBoundaryMesh data first.
boundary_.clear();
boundary_.setSize(0);
polyMesh::removeBoundary();
clearOut();
}
Foam::polyMesh::readUpdateState Foam::fvMesh::readUpdate()
{
if (debug)
{
Info<< "polyMesh::readUpdateState fvMesh::readUpdate() : "
<< "Updating fvMesh. ";
}
polyMesh::readUpdateState state = polyMesh::readUpdate();
if (state == polyMesh::TOPO_PATCH_CHANGE)
{
if (debug)
{
Info << "Boundary and topological update" << endl;
}
boundary_.readUpdate(boundaryMesh());
clearOut();
}
else if (state == polyMesh::TOPO_CHANGE)
{
if (debug)
{
Info << "Topological update" << endl;
}
clearOut();
}
else if (state == polyMesh::POINTS_MOVED)
{
if (debug)
{
Info << "Point motion update" << endl;
}
clearGeom();
}
else
{
if (debug)
{
Info << "No update" << endl;
}
}
return state;
}
const Foam::fvBoundaryMesh& Foam::fvMesh::boundary() const
{
return boundary_;
}
const Foam::lduAddressing& Foam::fvMesh::lduAddr() const
{
if (!lduPtr_)
{
lduPtr_ = new fvMeshLduAddressing(*this);
}
return *lduPtr_;
}
void Foam::fvMesh::mapFields(const mapPolyMesh& meshMap)
{
// Create a mapper
const fvMeshMapper mapper(*this, meshMap);
// Map all the volFields in the objectRegistry
MapGeometricFields<scalar, fvPatchField, fvMeshMapper, volMesh>
(mapper);
MapGeometricFields<vector, fvPatchField, fvMeshMapper, volMesh>
(mapper);
MapGeometricFields<sphericalTensor, fvPatchField, fvMeshMapper, volMesh>
(mapper);
MapGeometricFields<symmTensor, fvPatchField, fvMeshMapper, volMesh>
(mapper);
MapGeometricFields<tensor, fvPatchField, fvMeshMapper, volMesh>
(mapper);
// Map all the surfaceFields in the objectRegistry
MapGeometricFields<scalar, fvsPatchField, fvMeshMapper, surfaceMesh>
(mapper);
MapGeometricFields<vector, fvsPatchField, fvMeshMapper, surfaceMesh>
(mapper);
MapGeometricFields<symmTensor, fvsPatchField, fvMeshMapper, surfaceMesh>
(mapper);
MapGeometricFields<symmTensor, fvsPatchField, fvMeshMapper, surfaceMesh>
(mapper);
MapGeometricFields<tensor, fvsPatchField, fvMeshMapper, surfaceMesh>
(mapper);
// Map all the clouds in the objectRegistry
mapClouds(*this, meshMap);
const labelList& cellMap = meshMap.cellMap();
// Map the old volume. Just map to new cell labels.
if (V0Ptr_)
{
scalarField& V0 = *V0Ptr_;
scalarField savedV0(V0);
V0.setSize(nCells());
forAll(V0, i)
{
if (cellMap[i] > -1)
{
V0[i] = savedV0[cellMap[i]];
}
else
{
V0[i] = 0.0;
}
}
}
// Map the old-old volume. Just map to new cell labels.
if (V00Ptr_)
{
scalarField& V00 = *V00Ptr_;
scalarField savedV00(V00);
V00.setSize(nCells());
forAll(V00, i)
{
if (cellMap[i] > -1)
{
V00[i] = savedV00[cellMap[i]];
}
else
{
V00[i] = 0.0;
}
}
}
}
// Temporary helper function to call move points on
// MeshObjects
template<class Type>
void MeshObjectMovePoints(const Foam::fvMesh& mesh)
{
if (mesh.thisDb().foundObject<Type>(Type::typeName))
{
const_cast<Type&>
(
mesh.thisDb().lookupObject<Type>
(
Type::typeName
)
).movePoints();
}
}
Foam::tmp<Foam::scalarField> Foam::fvMesh::movePoints(const pointField& p)
{
// Grab old time volumes if the time has been incremented
if (curTimeIndex_ < time().timeIndex())
{
if (V00Ptr_ && V0Ptr_)
{
*V00Ptr_ = *V0Ptr_;
}
if (V0Ptr_)
{
*V0Ptr_ = V();
}
else
{
V0Ptr_ = new DimensionedField<scalar, volMesh>
(
IOobject
(
"V0",
time().timeName(),
*this,
IOobject::NO_READ,
IOobject::NO_WRITE
),
V()
);
}
curTimeIndex_ = time().timeIndex();
}
// delete out of date geometrical information
clearGeomNotOldVol();
if (!phiPtr_)
{
// Create mesh motion flux
phiPtr_ = new surfaceScalarField
(
IOobject
(
"meshPhi",
this->time().timeName(),
*this,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
*this,
dimVolume/dimTime
);
}
else
{
// Grab old time mesh motion fluxes if the time has been incremented
if (phiPtr_->timeIndex() != time().timeIndex())
{
phiPtr_->oldTime();
}
}
surfaceScalarField& phi = *phiPtr_;
// Move the polyMesh and set the mesh motion fluxes to the swept-volumes
scalar rDeltaT = 1.0/time().deltaT().value();
tmp<scalarField> tsweptVols = polyMesh::movePoints(p);
scalarField& sweptVols = tsweptVols();
phi.internalField() = scalarField::subField(sweptVols, nInternalFaces());
phi.internalField() *= rDeltaT;
const fvPatchList& patches = boundary();
forAll (patches, patchI)
{
phi.boundaryField()[patchI] = patches[patchI].patchSlice(sweptVols);
phi.boundaryField()[patchI] *= rDeltaT;
}
boundary_.movePoints();
surfaceInterpolation::movePoints();
// Hack until proper callbacks. Below are all the fvMesh MeshObjects with a
// movePoints function.
MeshObjectMovePoints<volPointInterpolation>(*this);
MeshObjectMovePoints<extendedLeastSquaresVectors>(*this);
MeshObjectMovePoints<leastSquaresVectors>(*this);
MeshObjectMovePoints<CentredFitData<linearFitPolynomial> >(*this);
MeshObjectMovePoints<CentredFitData<quadraticFitPolynomial> >(*this);
MeshObjectMovePoints<CentredFitData<quadraticLinearFitPolynomial> >(*this);
MeshObjectMovePoints<skewCorrectionVectors>(*this);
MeshObjectMovePoints<quadraticFitSnGradData>(*this);
return tsweptVols;
}
void Foam::fvMesh::updateMesh(const mapPolyMesh& mpm)
{
// Update polyMesh. This needs to keep volume existent!
polyMesh::updateMesh(mpm);
// Clear the sliced fields
clearGeomNotOldVol();
// Map all fields using current (i.e. not yet mapped) volume
mapFields(mpm);
// Clear the current volume and other geometry factors
surfaceInterpolation::clearOut();
clearAddressing();
// handleMorph() should also clear out the surfaceInterpolation.
// This is a temporary solution
surfaceInterpolation::movePoints();
}
bool Foam::fvMesh::writeObjects
(
IOstream::streamFormat fmt,
IOstream::versionNumber ver,
IOstream::compressionType cmp
) const
{
return polyMesh::writeObject(fmt, ver, cmp);
}
//- Write mesh using IO settings from the time
bool Foam::fvMesh::write() const
{
return polyMesh::write();
}
// * * * * * * * * * * * * * * * Member Operators * * * * * * * * * * * * * //
bool Foam::fvMesh::operator!=(const fvMesh& bm) const
{
return &bm != this;
}
bool Foam::fvMesh::operator==(const fvMesh& bm) const
{
return &bm == this;
}
// ************************************************************************* //