Files
openfoam/applications/solvers/combustion/PDRFoam/kEpsilon.H
2008-04-15 18:56:58 +01:00

55 lines
1.3 KiB
C

if(turbulence)
{
volScalarField divU = fvc::div(Uf & mesh.Sf());
tmp<volTensorField> tgradU = fvc::grad(Uf);
volScalarField G = 2*mut*(tgradU() && dev(symm(tgradU())));
tgradU.clear();
// Add the blockage generation term so that it is included consistently
// in both the k and epsilon equations
volScalarField GR = rho*mag(U)*(U & CT & U);
# include "wallFunctions.H"
// Dissipation equation
fvScalarMatrix epsEqn
(
betav*fvm::ddt(rho, epsilon)
+ fvm::div(phi, epsilon)
- fvm::laplacian(fvc::interpolate(alphaEps*muEff), epsilon)
==
C1*(betav*G + GR)*epsilon/k
- fvm::SuSp((2.0/3.0*C1)*betav*rho*divU, epsilon)
- fvm::Sp(C2*betav*rho*epsilon/k, epsilon)
);
# include "wallDissipation.H"
epsEqn.solve();
bound(epsilon, dimensionedScalar("0", epsilon.dimensions(), 1.0e-15));
// Turbulent kinetic energy equation
solve
(
betav*fvm::ddt(rho, k)
+ fvm::div(phi, k)
- fvm::laplacian(fvc::interpolate(alphak*muEff), k)
==
betav*G + GR
- fvm::SuSp(2.0/3.0*betav*rho*divU, k)
- fvm::Sp(betav*rho*epsilon/k, k)
);
bound(k, dimensionedScalar("0", k.dimensions(), 0.0));
//- Re-calculate turbulence viscosity
mut = Cmu*rho*sqr(k)/epsilon;
# include "wallViscosity.H"
}
muEff = mut + thermo->mu();