Files
openfoam/applications/solvers/multiphase/VoF/alphaEqn.H
Henry Weller 3df71d18d0 compressibleInterFoam: Improved mass conservation
using the continuity error correction formulation developed for
twoPhaseEulerFoam and reactingEulerFoam.
2017-06-22 14:42:36 +01:00

263 lines
6.8 KiB
C

{
word alphaScheme("div(phi,alpha)");
word alpharScheme("div(phirb,alpha)");
// Set the off-centering coefficient according to ddt scheme
scalar ocCoeff = 0;
{
tmp<fv::ddtScheme<scalar>> tddtAlpha
(
fv::ddtScheme<scalar>::New
(
mesh,
mesh.ddtScheme("ddt(alpha)")
)
);
const fv::ddtScheme<scalar>& ddtAlpha = tddtAlpha();
if
(
isType<fv::EulerDdtScheme<scalar>>(ddtAlpha)
|| isType<fv::localEulerDdtScheme<scalar>>(ddtAlpha)
)
{
ocCoeff = 0;
}
else if (isType<fv::CrankNicolsonDdtScheme<scalar>>(ddtAlpha))
{
if (nAlphaSubCycles > 1)
{
FatalErrorInFunction
<< "Sub-cycling is not supported "
"with the CrankNicolson ddt scheme"
<< exit(FatalError);
}
if
(
alphaRestart
|| mesh.time().timeIndex() > mesh.time().startTimeIndex() + 1
)
{
ocCoeff =
refCast<const fv::CrankNicolsonDdtScheme<scalar>>(ddtAlpha)
.ocCoeff();
}
}
else
{
FatalErrorInFunction
<< "Only Euler and CrankNicolson ddt schemes are supported"
<< exit(FatalError);
}
}
// Set the time blending factor, 1 for Euler
scalar cnCoeff = 1.0/(1.0 + ocCoeff);
// Standard face-flux compression coefficient
surfaceScalarField phic(mixture.cAlpha()*mag(phi/mesh.magSf()));
// Add the optional isotropic compression contribution
if (icAlpha > 0)
{
phic *= (1.0 - icAlpha);
phic += (mixture.cAlpha()*icAlpha)*fvc::interpolate(mag(U));
}
// Add the optional shear compression contribution
if (scAlpha > 0)
{
phic +=
scAlpha*mag(mesh.delta() & fvc::interpolate(symm(fvc::grad(U))));
}
surfaceScalarField::Boundary& phicBf =
phic.boundaryFieldRef();
// Do not compress interface at non-coupled boundary faces
// (inlets, outlets etc.)
forAll(phic.boundaryField(), patchi)
{
fvsPatchScalarField& phicp = phicBf[patchi];
if (!phicp.coupled())
{
phicp == 0;
}
}
tmp<surfaceScalarField> phiCN(phi);
// Calculate the Crank-Nicolson off-centred volumetric flux
if (ocCoeff > 0)
{
phiCN = cnCoeff*phi + (1.0 - cnCoeff)*phi.oldTime();
}
if (MULESCorr)
{
#include "alphaSuSp.H"
fvScalarMatrix alpha1Eqn
(
(
LTS
? fv::localEulerDdtScheme<scalar>(mesh).fvmDdt(alpha1)
: fv::EulerDdtScheme<scalar>(mesh).fvmDdt(alpha1)
)
+ fv::gaussConvectionScheme<scalar>
(
mesh,
phiCN,
upwind<scalar>(mesh, phiCN)
).fvmDiv(phiCN, alpha1)
// - fvm::Sp(fvc::ddt(dimensionedScalar("1", dimless, 1), mesh)
// + fvc::div(phiCN), alpha1)
==
Su + fvm::Sp(Sp + divU, alpha1)
);
alpha1Eqn.solve();
Info<< "Phase-1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value()
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
<< " Max(" << alpha1.name() << ") = " << max(alpha1).value()
<< endl;
tmp<surfaceScalarField> talphaPhi1UD(alpha1Eqn.flux());
alphaPhi10 = talphaPhi1UD();
if (alphaApplyPrevCorr && talphaPhi1Corr0.valid())
{
Info<< "Applying the previous iteration compression flux" << endl;
MULES::correct(alpha1, alphaPhi10, talphaPhi1Corr0.ref(), 1, 0);
alphaPhi10 += talphaPhi1Corr0();
}
// Cache the upwind-flux
talphaPhi1Corr0 = talphaPhi1UD;
alpha2 = 1.0 - alpha1;
mixture.correct();
}
for (int aCorr=0; aCorr<nAlphaCorr; aCorr++)
{
#include "alphaSuSp.H"
surfaceScalarField phir(phic*mixture.nHatf());
tmp<surfaceScalarField> talphaPhi1Un
(
fvc::flux
(
phiCN(),
cnCoeff*alpha1 + (1.0 - cnCoeff)*alpha1.oldTime(),
alphaScheme
)
+ fvc::flux
(
-fvc::flux(-phir, alpha2, alpharScheme),
alpha1,
alpharScheme
)
);
if (MULESCorr)
{
tmp<surfaceScalarField> talphaPhi1Corr(talphaPhi1Un() - alphaPhi10);
volScalarField alpha10("alpha10", alpha1);
MULES::correct
(
geometricOneField(),
alpha1,
talphaPhi1Un(),
talphaPhi1Corr.ref(),
Sp,
(-Sp*alpha1)(),
1,
0
);
// Under-relax the correction for all but the 1st corrector
if (aCorr == 0)
{
alphaPhi10 += talphaPhi1Corr();
}
else
{
alpha1 = 0.5*alpha1 + 0.5*alpha10;
alphaPhi10 += 0.5*talphaPhi1Corr();
}
}
else
{
alphaPhi10 = talphaPhi1Un;
MULES::explicitSolve
(
geometricOneField(),
alpha1,
phiCN,
alphaPhi10,
Sp,
(Su + divU*min(alpha1(), scalar(1)))(),
1,
0
);
}
alpha2 = 1.0 - alpha1;
mixture.correct();
}
if (alphaApplyPrevCorr && MULESCorr)
{
talphaPhi1Corr0 = alphaPhi10 - talphaPhi1Corr0;
talphaPhi1Corr0.ref().rename("alphaPhi1Corr0");
}
else
{
talphaPhi1Corr0.clear();
}
#include "rhofs.H"
if
(
word(mesh.ddtScheme("ddt(rho,U)"))
== fv::EulerDdtScheme<vector>::typeName
|| word(mesh.ddtScheme("ddt(rho,U)"))
== fv::localEulerDdtScheme<vector>::typeName
)
{
rhoPhi = alphaPhi10*(rho1f - rho2f) + phiCN*rho2f;
}
else
{
if (ocCoeff > 0)
{
// Calculate the end-of-time-step alpha flux
alphaPhi10 =
(alphaPhi10 - (1.0 - cnCoeff)*alphaPhi10.oldTime())/cnCoeff;
}
// Calculate the end-of-time-step mass flux
rhoPhi = alphaPhi10*(rho1f - rho2f) + phi*rho2f;
}
Info<< "Phase-1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value()
<< " Min(" << alpha1.name() << ") = " << min(alpha1).value()
<< " Max(" << alpha1.name() << ") = " << max(alpha1).value()
<< endl;
}