Files
openfoam/src/finiteVolume/interpolation/surfaceInterpolation/surfaceInterpolation/surfaceInterpolation.C
2009-08-28 18:04:22 +01:00

392 lines
10 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Description
Cell to face interpolation scheme. Included in fvMesh.
\*---------------------------------------------------------------------------*/
#include "fvMesh.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "demandDrivenData.H"
#include "coupledFvPatch.H"
#include "mathConstants.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
defineTypeNameAndDebug(surfaceInterpolation, 0);
// * * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * //
void surfaceInterpolation::clearOut()
{
deleteDemandDrivenData(weightingFactors_);
deleteDemandDrivenData(differenceFactors_);
deleteDemandDrivenData(correctionVectors_);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
surfaceInterpolation::surfaceInterpolation(const fvMesh& fvm)
:
fvSchemes(static_cast<const objectRegistry&>(fvm)),
fvSolution(static_cast<const objectRegistry&>(fvm)),
mesh_(fvm),
weightingFactors_(NULL),
differenceFactors_(NULL),
orthogonal_(false),
correctionVectors_(NULL)
{}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
surfaceInterpolation::~surfaceInterpolation()
{
clearOut();
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
const surfaceScalarField& surfaceInterpolation::weights() const
{
if (!weightingFactors_)
{
makeWeights();
}
return (*weightingFactors_);
}
const surfaceScalarField& surfaceInterpolation::deltaCoeffs() const
{
if (!differenceFactors_)
{
makeDeltaCoeffs();
}
return (*differenceFactors_);
}
bool surfaceInterpolation::orthogonal() const
{
if (orthogonal_ == false && !correctionVectors_)
{
makeCorrectionVectors();
}
return orthogonal_;
}
const surfaceVectorField& surfaceInterpolation::correctionVectors() const
{
if (orthogonal())
{
FatalErrorIn("surfaceInterpolation::correctionVectors()")
<< "cannot return correctionVectors; mesh is orthogonal"
<< abort(FatalError);
}
return (*correctionVectors_);
}
// Do what is neccessary if the mesh has moved
bool surfaceInterpolation::movePoints()
{
deleteDemandDrivenData(weightingFactors_);
deleteDemandDrivenData(differenceFactors_);
orthogonal_ = false;
deleteDemandDrivenData(correctionVectors_);
return true;
}
void surfaceInterpolation::makeWeights() const
{
if (debug)
{
Info<< "surfaceInterpolation::makeWeights() : "
<< "Constructing weighting factors for face interpolation"
<< endl;
}
weightingFactors_ = new surfaceScalarField
(
IOobject
(
"weightingFactors",
mesh_.pointsInstance(),
mesh_
),
mesh_,
dimless
);
surfaceScalarField& weightingFactors = *weightingFactors_;
// Set local references to mesh data
// (note that we should not use fvMesh sliced fields at this point yet
// since this causes a loop when generating weighting factors in
// coupledFvPatchField evaluation phase)
const unallocLabelList& owner = mesh_.owner();
const unallocLabelList& neighbour = mesh_.neighbour();
const vectorField& Cf = mesh_.faceCentres();
const vectorField& C = mesh_.cellCentres();
const vectorField& Sf = mesh_.faceAreas();
// ... and reference to the internal field of the weighting factors
scalarField& w = weightingFactors.internalField();
forAll(owner, facei)
{
// Note: mag in the dot-product.
// For all valid meshes, the non-orthogonality will be less that
// 90 deg and the dot-product will be positive. For invalid
// meshes (d & s <= 0), this will stabilise the calculation
// but the result will be poor.
scalar SfdOwn = mag(Sf[facei] & (Cf[facei] - C[owner[facei]]));
scalar SfdNei = mag(Sf[facei] & (C[neighbour[facei]] - Cf[facei]));
w[facei] = SfdNei/(SfdOwn + SfdNei);
}
forAll(mesh_.boundary(), patchi)
{
mesh_.boundary()[patchi].makeWeights
(
weightingFactors.boundaryField()[patchi]
);
}
if (debug)
{
Info<< "surfaceInterpolation::makeWeights() : "
<< "Finished constructing weighting factors for face interpolation"
<< endl;
}
}
void surfaceInterpolation::makeDeltaCoeffs() const
{
if (debug)
{
Info<< "surfaceInterpolation::makeDeltaCoeffs() : "
<< "Constructing differencing factors array for face gradient"
<< endl;
}
// Force the construction of the weighting factors
// needed to make sure deltaCoeffs are calculated for parallel runs.
weights();
differenceFactors_ = new surfaceScalarField
(
IOobject
(
"differenceFactors_",
mesh_.pointsInstance(),
mesh_
),
mesh_,
dimless/dimLength
);
surfaceScalarField& DeltaCoeffs = *differenceFactors_;
// Set local references to mesh data
const volVectorField& C = mesh_.C();
const unallocLabelList& owner = mesh_.owner();
const unallocLabelList& neighbour = mesh_.neighbour();
const surfaceVectorField& Sf = mesh_.Sf();
const surfaceScalarField& magSf = mesh_.magSf();
forAll(owner, facei)
{
vector delta = C[neighbour[facei]] - C[owner[facei]];
vector unitArea = Sf[facei]/magSf[facei];
// Standard cell-centre distance form
//DeltaCoeffs[facei] = (unitArea & delta)/magSqr(delta);
// Slightly under-relaxed form
//DeltaCoeffs[facei] = 1.0/mag(delta);
// More under-relaxed form
//DeltaCoeffs[facei] = 1.0/(mag(unitArea & delta) + VSMALL);
// Stabilised form for bad meshes
DeltaCoeffs[facei] = 1.0/max(unitArea & delta, 0.05*mag(delta));
}
forAll(DeltaCoeffs.boundaryField(), patchi)
{
mesh_.boundary()[patchi].makeDeltaCoeffs
(
DeltaCoeffs.boundaryField()[patchi]
);
}
}
void surfaceInterpolation::makeCorrectionVectors() const
{
if (debug)
{
Info<< "surfaceInterpolation::makeCorrectionVectors() : "
<< "Constructing non-orthogonal correction vectors"
<< endl;
}
correctionVectors_ = new surfaceVectorField
(
IOobject
(
"correctionVectors",
mesh_.pointsInstance(),
mesh_
),
mesh_,
dimless
);
surfaceVectorField& corrVecs = *correctionVectors_;
// Set local references to mesh data
const volVectorField& C = mesh_.C();
const unallocLabelList& owner = mesh_.owner();
const unallocLabelList& neighbour = mesh_.neighbour();
const surfaceVectorField& Sf = mesh_.Sf();
const surfaceScalarField& magSf = mesh_.magSf();
const surfaceScalarField& DeltaCoeffs = deltaCoeffs();
forAll(owner, facei)
{
vector unitArea = Sf[facei]/magSf[facei];
vector delta = C[neighbour[facei]] - C[owner[facei]];
corrVecs[facei] = unitArea - delta*DeltaCoeffs[facei];
}
// Boundary correction vectors set to zero for boundary patches
// and calculated consistently with internal corrections for
// coupled patches
forAll(corrVecs.boundaryField(), patchi)
{
fvsPatchVectorField& patchcorrVecs = corrVecs.boundaryField()[patchi];
if (!patchcorrVecs.coupled())
{
patchcorrVecs = vector::zero;
}
else
{
const fvsPatchScalarField& patchDeltaCoeffs
= DeltaCoeffs.boundaryField()[patchi];
const fvPatch& p = patchcorrVecs.patch();
vectorField patchDeltas = mesh_.boundary()[patchi].delta();
forAll(p, patchFacei)
{
vector unitArea =
Sf.boundaryField()[patchi][patchFacei]
/magSf.boundaryField()[patchi][patchFacei];
const vector& delta = patchDeltas[patchFacei];
patchcorrVecs[patchFacei] =
unitArea - delta*patchDeltaCoeffs[patchFacei];
}
}
}
scalar NonOrthogCoeff = 0.0;
// Calculate the non-orthogonality for meshes with 1 face or more
if (returnReduce(magSf.size(), sumOp<label>()) > 0)
{
NonOrthogCoeff =
asin
(
min
(
(sum(magSf*mag(corrVecs))/sum(magSf)).value(),
1.0
)
)*180.0/constant::math::pi;
}
if (debug)
{
Info<< "surfaceInterpolation::makeCorrectionVectors() : "
<< "non-orthogonality coefficient = " << NonOrthogCoeff << " deg."
<< endl;
}
//NonOrthogCoeff = 0.0;
if (NonOrthogCoeff < 0.1)
{
orthogonal_ = true;
deleteDemandDrivenData(correctionVectors_);
}
else
{
orthogonal_ = false;
}
if (debug)
{
Info<< "surfaceInterpolation::makeCorrectionVectors() : "
<< "Finished constructing non-orthogonal correction vectors"
<< endl;
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// ************************************************************************* //