Files
openfoam/applications/solvers/multiphase/interFoam/alphaEqn.H
Henry 9873774ee9 VoF solvers: rationalize the relationship between VoF solvers
Improve code reuse
Add multiphaseInterDyMFoam
Retire MRFinterFoam -> now handled by interFoam with fvOptions
Update tutorials
2014-04-29 14:16:41 +01:00

151 lines
4.0 KiB
C

{
word alphaScheme("div(phi,alpha)");
word alpharScheme("div(phirb,alpha)");
// Standard face-flux compression coefficient
surfaceScalarField phic(mixture.cAlpha()*mag(phi/mesh.magSf()));
// Add the optional isotropic compression contribution
if (icAlpha > 0)
{
phic *= (1.0 - icAlpha);
phic += (mixture.cAlpha()*icAlpha)*fvc::interpolate(mag(U));
}
// Do not compress interface at non-coupled boundary faces
// (inlets, outlets etc.)
forAll(phic.boundaryField(), patchi)
{
fvsPatchScalarField& phicp = phic.boundaryField()[patchi];
if (!phicp.coupled())
{
phicp == 0;
}
}
tmp<surfaceScalarField> tphiAlpha;
if (MULESCorr)
{
fvScalarMatrix alpha1Eqn
(
#ifdef LTSSOLVE
fv::localEulerDdtScheme<scalar>(mesh, rDeltaT.name()).fvmDdt(alpha1)
#else
fv::EulerDdtScheme<scalar>(mesh).fvmDdt(alpha1)
#endif
+ fv::gaussConvectionScheme<scalar>
(
mesh,
phi,
upwind<scalar>(mesh, phi)
).fvmDiv(phi, alpha1)
);
alpha1Eqn.solve();
Info<< "Phase-1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value()
<< " Min(alpha1) = " << min(alpha1).value()
<< " Max(alpha1) = " << max(alpha1).value()
<< endl;
tmp<surfaceScalarField> tphiAlphaUD(alpha1Eqn.flux());
tphiAlpha = tmp<surfaceScalarField>
(
new surfaceScalarField(tphiAlphaUD())
);
if (alphaApplyPrevCorr && tphiAlphaCorr0.valid())
{
Info<< "Applying the previous iteration compression flux" << endl;
#ifdef LTSSOLVE
MULES::LTScorrect(alpha1, tphiAlpha(), tphiAlphaCorr0(), 1, 0);
#else
MULES::correct(alpha1, tphiAlpha(), tphiAlphaCorr0(), 1, 0);
#endif
tphiAlpha() += tphiAlphaCorr0();
}
// Cache the upwind-flux
tphiAlphaCorr0 = tphiAlphaUD;
alpha2 = 1.0 - alpha1;
mixture.correct();
}
for (int aCorr=0; aCorr<nAlphaCorr; aCorr++)
{
surfaceScalarField phir(phic*mixture.nHatf());
tmp<surfaceScalarField> tphiAlphaUn
(
fvc::flux
(
phi,
alpha1,
alphaScheme
)
+ fvc::flux
(
-fvc::flux(-phir, alpha2, alpharScheme),
alpha1,
alpharScheme
)
);
if (MULESCorr)
{
tmp<surfaceScalarField> tphiAlphaCorr(tphiAlphaUn() - tphiAlpha());
volScalarField alpha10(alpha1);
#ifdef LTSSOLVE
MULES::LTScorrect(alpha1, tphiAlphaUn(), tphiAlphaCorr(), 1, 0);
#else
MULES::correct(alpha1, tphiAlphaUn(), tphiAlphaCorr(), 1, 0);
#endif
// Under-relax the correction for all but the 1st corrector
if (aCorr == 0)
{
tphiAlpha() += tphiAlphaCorr();
}
else
{
alpha1 = 0.5*alpha1 + 0.5*alpha10;
tphiAlpha() += 0.5*tphiAlphaCorr();
}
}
else
{
tphiAlpha = tphiAlphaUn;
#ifdef LTSSOLVE
MULES::explicitLTSSolve(alpha1, phi, tphiAlpha(), 1, 0);
#else
MULES::explicitSolve(alpha1, phi, tphiAlpha(), 1, 0);
#endif
}
alpha2 = 1.0 - alpha1;
mixture.correct();
}
rhoPhi = tphiAlpha()*(rho1 - rho2) + phi*rho2;
if (alphaApplyPrevCorr && MULESCorr)
{
tphiAlphaCorr0 = tphiAlpha() - tphiAlphaCorr0;
}
Info<< "Phase-1 volume fraction = "
<< alpha1.weightedAverage(mesh.Vsc()).value()
<< " Min(alpha1) = " << min(alpha1).value()
<< " Max(alpha1) = " << max(alpha1).value()
<< endl;
}