mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
1215 lines
28 KiB
C
1215 lines
28 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | www.openfoam.com
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
Copyright (C) 2013-2017 OpenFOAM Foundation
|
|
Copyright (C) 2020 OpenCFD Ltd.
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "multiphaseMixtureThermo.H"
|
|
#include "alphaContactAngleFvPatchScalarField.H"
|
|
#include "Time.H"
|
|
#include "subCycle.H"
|
|
#include "MULES.H"
|
|
#include "fvcDiv.H"
|
|
#include "fvcGrad.H"
|
|
#include "fvcSnGrad.H"
|
|
#include "fvcFlux.H"
|
|
#include "fvcMeshPhi.H"
|
|
#include "surfaceInterpolate.H"
|
|
#include "unitConversion.H"
|
|
|
|
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
|
|
|
|
namespace Foam
|
|
{
|
|
defineTypeNameAndDebug(multiphaseMixtureThermo, 0);
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
|
|
|
|
void Foam::multiphaseMixtureThermo::calcAlphas()
|
|
{
|
|
scalar level = 0.0;
|
|
alphas_ == 0.0;
|
|
|
|
for (const phaseModel& phase : phases_)
|
|
{
|
|
alphas_ += level * phase;
|
|
level += 1.0;
|
|
}
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
|
|
|
Foam::multiphaseMixtureThermo::multiphaseMixtureThermo
|
|
(
|
|
const volVectorField& U,
|
|
const surfaceScalarField& phi
|
|
)
|
|
:
|
|
psiThermo(U.mesh(), word::null),
|
|
phases_(lookup("phases"), phaseModel::iNew(p_, T_)),
|
|
|
|
mesh_(U.mesh()),
|
|
U_(U),
|
|
phi_(phi),
|
|
|
|
rhoPhi_
|
|
(
|
|
IOobject
|
|
(
|
|
"rhoPhi",
|
|
mesh_.time().timeName(),
|
|
mesh_,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE
|
|
),
|
|
mesh_,
|
|
dimensionedScalar(dimMass/dimTime, Zero)
|
|
),
|
|
|
|
alphas_
|
|
(
|
|
IOobject
|
|
(
|
|
"alphas",
|
|
mesh_.time().timeName(),
|
|
mesh_,
|
|
IOobject::NO_READ,
|
|
IOobject::AUTO_WRITE
|
|
),
|
|
mesh_,
|
|
dimensionedScalar(dimless, Zero)
|
|
),
|
|
|
|
sigmas_(lookup("sigmas")),
|
|
dimSigma_(1, 0, -2, 0, 0),
|
|
deltaN_
|
|
(
|
|
"deltaN",
|
|
1e-8/cbrt(average(mesh_.V()))
|
|
)
|
|
{
|
|
rhoPhi_.setOriented();
|
|
calcAlphas();
|
|
alphas_.write();
|
|
correct();
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
|
|
|
|
void Foam::multiphaseMixtureThermo::correct()
|
|
{
|
|
for (phaseModel& phase : phases_)
|
|
{
|
|
phase.correct();
|
|
}
|
|
|
|
auto phasei = phases_.cbegin();
|
|
|
|
psi_ = phasei()*phasei().thermo().psi();
|
|
mu_ = phasei()*phasei().thermo().mu();
|
|
alpha_ = phasei()*phasei().thermo().alpha();
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
psi_ += phasei()*phasei().thermo().psi();
|
|
mu_ += phasei()*phasei().thermo().mu();
|
|
alpha_ += phasei()*phasei().thermo().alpha();
|
|
}
|
|
}
|
|
|
|
|
|
void Foam::multiphaseMixtureThermo::correctRho(const volScalarField& dp)
|
|
{
|
|
for (phaseModel& phase : phases_)
|
|
{
|
|
phase.thermo().rho() += phase.thermo().psi()*dp;
|
|
}
|
|
}
|
|
|
|
|
|
Foam::word Foam::multiphaseMixtureThermo::thermoName() const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
word name = phasei().thermo().thermoName();
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
name += ',' + phasei().thermo().thermoName();
|
|
}
|
|
|
|
return name;
|
|
}
|
|
|
|
|
|
bool Foam::multiphaseMixtureThermo::incompressible() const
|
|
{
|
|
for (const phaseModel& phase : phases_)
|
|
{
|
|
if (!phase.thermo().incompressible())
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool Foam::multiphaseMixtureThermo::isochoric() const
|
|
{
|
|
for (const phaseModel& phase : phases_)
|
|
{
|
|
if (!phase.thermo().isochoric())
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixtureThermo::he
|
|
(
|
|
const volScalarField& p,
|
|
const volScalarField& T
|
|
) const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<volScalarField> the(phasei()*phasei().thermo().he(p, T));
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
the.ref() += phasei()*phasei().thermo().he(p, T);
|
|
}
|
|
|
|
return the;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField> Foam::multiphaseMixtureThermo::he
|
|
(
|
|
const scalarField& p,
|
|
const scalarField& T,
|
|
const labelList& cells
|
|
) const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<scalarField> the
|
|
(
|
|
scalarField(phasei(), cells)*phasei().thermo().he(p, T, cells)
|
|
);
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
the.ref() +=
|
|
scalarField(phasei(), cells)*phasei().thermo().he(p, T, cells);
|
|
}
|
|
|
|
return the;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField> Foam::multiphaseMixtureThermo::he
|
|
(
|
|
const scalarField& p,
|
|
const scalarField& T,
|
|
const label patchi
|
|
) const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<scalarField> the
|
|
(
|
|
phasei().boundaryField()[patchi]*phasei().thermo().he(p, T, patchi)
|
|
);
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
the.ref() +=
|
|
phasei().boundaryField()[patchi]*phasei().thermo().he(p, T, patchi);
|
|
}
|
|
|
|
return the;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixtureThermo::hc() const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<volScalarField> thc(phasei()*phasei().thermo().hc());
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
thc.ref() += phasei()*phasei().thermo().hc();
|
|
}
|
|
|
|
return thc;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField> Foam::multiphaseMixtureThermo::THE
|
|
(
|
|
const scalarField& h,
|
|
const scalarField& p,
|
|
const scalarField& T0,
|
|
const labelList& cells
|
|
) const
|
|
{
|
|
NotImplemented;
|
|
return T0;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField> Foam::multiphaseMixtureThermo::THE
|
|
(
|
|
const scalarField& h,
|
|
const scalarField& p,
|
|
const scalarField& T0,
|
|
const label patchi
|
|
) const
|
|
{
|
|
NotImplemented;
|
|
return T0;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixtureThermo::rho() const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<volScalarField> trho(phasei()*phasei().thermo().rho());
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
trho.ref() += phasei()*phasei().thermo().rho();
|
|
}
|
|
|
|
return trho;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField> Foam::multiphaseMixtureThermo::rho
|
|
(
|
|
const label patchi
|
|
) const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<scalarField> trho
|
|
(
|
|
phasei().boundaryField()[patchi]*phasei().thermo().rho(patchi)
|
|
);
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
trho.ref() +=
|
|
phasei().boundaryField()[patchi]*phasei().thermo().rho(patchi);
|
|
}
|
|
|
|
return trho;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixtureThermo::Cp() const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<volScalarField> tCp(phasei()*phasei().thermo().Cp());
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
tCp.ref() += phasei()*phasei().thermo().Cp();
|
|
}
|
|
|
|
return tCp;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField> Foam::multiphaseMixtureThermo::Cp
|
|
(
|
|
const scalarField& p,
|
|
const scalarField& T,
|
|
const label patchi
|
|
) const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<scalarField> tCp
|
|
(
|
|
phasei().boundaryField()[patchi]*phasei().thermo().Cp(p, T, patchi)
|
|
);
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
tCp.ref() +=
|
|
phasei().boundaryField()[patchi]*phasei().thermo().Cp(p, T, patchi);
|
|
}
|
|
|
|
return tCp;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixtureThermo::Cv() const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<volScalarField> tCv(phasei()*phasei().thermo().Cv());
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
tCv.ref() += phasei()*phasei().thermo().Cv();
|
|
}
|
|
|
|
return tCv;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField> Foam::multiphaseMixtureThermo::Cv
|
|
(
|
|
const scalarField& p,
|
|
const scalarField& T,
|
|
const label patchi
|
|
) const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<scalarField> tCv
|
|
(
|
|
phasei().boundaryField()[patchi]*phasei().thermo().Cv(p, T, patchi)
|
|
);
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
tCv.ref() +=
|
|
phasei().boundaryField()[patchi]*phasei().thermo().Cv(p, T, patchi);
|
|
}
|
|
|
|
return tCv;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixtureThermo::gamma() const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<volScalarField> tgamma(phasei()*phasei().thermo().gamma());
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
tgamma.ref() += phasei()*phasei().thermo().gamma();
|
|
}
|
|
|
|
return tgamma;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField> Foam::multiphaseMixtureThermo::gamma
|
|
(
|
|
const scalarField& p,
|
|
const scalarField& T,
|
|
const label patchi
|
|
) const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<scalarField> tgamma
|
|
(
|
|
phasei().boundaryField()[patchi]*phasei().thermo().gamma(p, T, patchi)
|
|
);
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
tgamma.ref() +=
|
|
phasei().boundaryField()[patchi]
|
|
*phasei().thermo().gamma(p, T, patchi);
|
|
}
|
|
|
|
return tgamma;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixtureThermo::Cpv() const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<volScalarField> tCpv(phasei()*phasei().thermo().Cpv());
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
tCpv.ref() += phasei()*phasei().thermo().Cpv();
|
|
}
|
|
|
|
return tCpv;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField> Foam::multiphaseMixtureThermo::Cpv
|
|
(
|
|
const scalarField& p,
|
|
const scalarField& T,
|
|
const label patchi
|
|
) const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<scalarField> tCpv
|
|
(
|
|
phasei().boundaryField()[patchi]*phasei().thermo().Cpv(p, T, patchi)
|
|
);
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
tCpv.ref() +=
|
|
phasei().boundaryField()[patchi]
|
|
*phasei().thermo().Cpv(p, T, patchi);
|
|
}
|
|
|
|
return tCpv;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixtureThermo::CpByCpv() const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<volScalarField> tCpByCpv(phasei()*phasei().thermo().CpByCpv());
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
tCpByCpv.ref() += phasei()*phasei().thermo().CpByCpv();
|
|
}
|
|
|
|
return tCpByCpv;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField> Foam::multiphaseMixtureThermo::CpByCpv
|
|
(
|
|
const scalarField& p,
|
|
const scalarField& T,
|
|
const label patchi
|
|
) const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<scalarField> tCpByCpv
|
|
(
|
|
phasei().boundaryField()[patchi]*phasei().thermo().CpByCpv(p, T, patchi)
|
|
);
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
tCpByCpv.ref() +=
|
|
phasei().boundaryField()[patchi]
|
|
*phasei().thermo().CpByCpv(p, T, patchi);
|
|
}
|
|
|
|
return tCpByCpv;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixtureThermo::W() const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<volScalarField> tW(phasei()*phasei().thermo().W());
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
tW.ref() += phasei()*phasei().thermo().W();
|
|
}
|
|
|
|
return tW;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixtureThermo::nu() const
|
|
{
|
|
return mu()/rho();
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField> Foam::multiphaseMixtureThermo::nu
|
|
(
|
|
const label patchi
|
|
) const
|
|
{
|
|
return mu(patchi)/rho(patchi);
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixtureThermo::kappa() const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<volScalarField> tkappa(phasei()*phasei().thermo().kappa());
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
tkappa.ref() += phasei()*phasei().thermo().kappa();
|
|
}
|
|
|
|
return tkappa;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField> Foam::multiphaseMixtureThermo::kappa
|
|
(
|
|
const label patchi
|
|
) const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<scalarField> tkappa
|
|
(
|
|
phasei().boundaryField()[patchi]*phasei().thermo().kappa(patchi)
|
|
);
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
tkappa.ref() +=
|
|
phasei().boundaryField()[patchi]*phasei().thermo().kappa(patchi);
|
|
}
|
|
|
|
return tkappa;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixtureThermo::alphahe() const
|
|
{
|
|
PtrDictionary<phaseModel>::const_iterator phasei = phases_.begin();
|
|
|
|
tmp<volScalarField> talphaEff(phasei()*phasei().thermo().alphahe());
|
|
|
|
for (++phasei; phasei != phases_.end(); ++phasei)
|
|
{
|
|
talphaEff.ref() += phasei()*phasei().thermo().alphahe();
|
|
}
|
|
|
|
return talphaEff;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField> Foam::multiphaseMixtureThermo::alphahe
|
|
(
|
|
const label patchi
|
|
) const
|
|
{
|
|
PtrDictionary<phaseModel>::const_iterator phasei = phases_.begin();
|
|
|
|
tmp<scalarField> talphaEff
|
|
(
|
|
phasei().boundaryField()[patchi]
|
|
*phasei().thermo().alphahe(patchi)
|
|
);
|
|
|
|
for (++phasei; phasei != phases_.end(); ++phasei)
|
|
{
|
|
talphaEff.ref() +=
|
|
phasei().boundaryField()[patchi]
|
|
*phasei().thermo().alphahe(patchi);
|
|
}
|
|
|
|
return talphaEff;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixtureThermo::kappaEff
|
|
(
|
|
const volScalarField& alphat
|
|
) const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<volScalarField> tkappaEff(phasei()*phasei().thermo().kappaEff(alphat));
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
tkappaEff.ref() += phasei()*phasei().thermo().kappaEff(alphat);
|
|
}
|
|
|
|
return tkappaEff;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField> Foam::multiphaseMixtureThermo::kappaEff
|
|
(
|
|
const scalarField& alphat,
|
|
const label patchi
|
|
) const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<scalarField> tkappaEff
|
|
(
|
|
phasei().boundaryField()[patchi]
|
|
*phasei().thermo().kappaEff(alphat, patchi)
|
|
);
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
tkappaEff.ref() +=
|
|
phasei().boundaryField()[patchi]
|
|
*phasei().thermo().kappaEff(alphat, patchi);
|
|
}
|
|
|
|
return tkappaEff;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixtureThermo::alphaEff
|
|
(
|
|
const volScalarField& alphat
|
|
) const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<volScalarField> talphaEff(phasei()*phasei().thermo().alphaEff(alphat));
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
talphaEff.ref() += phasei()*phasei().thermo().alphaEff(alphat);
|
|
}
|
|
|
|
return talphaEff;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::scalarField> Foam::multiphaseMixtureThermo::alphaEff
|
|
(
|
|
const scalarField& alphat,
|
|
const label patchi
|
|
) const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<scalarField> talphaEff
|
|
(
|
|
phasei().boundaryField()[patchi]
|
|
*phasei().thermo().alphaEff(alphat, patchi)
|
|
);
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
talphaEff.ref() +=
|
|
phasei().boundaryField()[patchi]
|
|
*phasei().thermo().alphaEff(alphat, patchi);
|
|
}
|
|
|
|
return talphaEff;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixtureThermo::rCv() const
|
|
{
|
|
auto phasei = phases_.cbegin();
|
|
|
|
tmp<volScalarField> trCv(phasei()/phasei().thermo().Cv());
|
|
|
|
for (++phasei; phasei != phases_.cend(); ++phasei)
|
|
{
|
|
trCv.ref() += phasei()/phasei().thermo().Cv();
|
|
}
|
|
|
|
return trCv;
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::surfaceScalarField>
|
|
Foam::multiphaseMixtureThermo::surfaceTensionForce() const
|
|
{
|
|
tmp<surfaceScalarField> tstf
|
|
(
|
|
new surfaceScalarField
|
|
(
|
|
IOobject
|
|
(
|
|
"surfaceTensionForce",
|
|
mesh_.time().timeName(),
|
|
mesh_
|
|
),
|
|
mesh_,
|
|
dimensionedScalar(dimensionSet(1, -2, -2, 0, 0), Zero)
|
|
)
|
|
);
|
|
|
|
surfaceScalarField& stf = tstf.ref();
|
|
stf.setOriented();
|
|
|
|
forAllConstIters(phases_, phase1)
|
|
{
|
|
const phaseModel& alpha1 = *phase1;
|
|
|
|
auto phase2 = phase1;
|
|
|
|
for (++phase2; phase2 != phases_.cend(); ++phase2)
|
|
{
|
|
const phaseModel& alpha2 = *phase2;
|
|
|
|
auto sigma = sigmas_.cfind(interfacePair(alpha1, alpha2));
|
|
|
|
if (!sigma.found())
|
|
{
|
|
FatalErrorInFunction
|
|
<< "Cannot find interface " << interfacePair(alpha1, alpha2)
|
|
<< " in list of sigma values"
|
|
<< exit(FatalError);
|
|
}
|
|
|
|
stf += dimensionedScalar("sigma", dimSigma_, *sigma)
|
|
*fvc::interpolate(K(alpha1, alpha2))*
|
|
(
|
|
fvc::interpolate(alpha2)*fvc::snGrad(alpha1)
|
|
- fvc::interpolate(alpha1)*fvc::snGrad(alpha2)
|
|
);
|
|
}
|
|
}
|
|
|
|
return tstf;
|
|
}
|
|
|
|
|
|
void Foam::multiphaseMixtureThermo::solve()
|
|
{
|
|
const Time& runTime = mesh_.time();
|
|
|
|
const dictionary& alphaControls = mesh_.solverDict("alpha");
|
|
label nAlphaSubCycles(alphaControls.get<label>("nAlphaSubCycles"));
|
|
scalar cAlpha(alphaControls.get<scalar>("cAlpha"));
|
|
|
|
volScalarField& alpha = phases_.first();
|
|
|
|
if (nAlphaSubCycles > 1)
|
|
{
|
|
surfaceScalarField rhoPhiSum(0.0*rhoPhi_);
|
|
dimensionedScalar totalDeltaT = runTime.deltaT();
|
|
|
|
for
|
|
(
|
|
subCycle<volScalarField> alphaSubCycle(alpha, nAlphaSubCycles);
|
|
!(++alphaSubCycle).end();
|
|
)
|
|
{
|
|
solveAlphas(cAlpha);
|
|
rhoPhiSum += (runTime.deltaT()/totalDeltaT)*rhoPhi_;
|
|
}
|
|
|
|
rhoPhi_ = rhoPhiSum;
|
|
}
|
|
else
|
|
{
|
|
solveAlphas(cAlpha);
|
|
}
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::surfaceVectorField> Foam::multiphaseMixtureThermo::nHatfv
|
|
(
|
|
const volScalarField& alpha1,
|
|
const volScalarField& alpha2
|
|
) const
|
|
{
|
|
/*
|
|
// Cell gradient of alpha
|
|
volVectorField gradAlpha =
|
|
alpha2*fvc::grad(alpha1) - alpha1*fvc::grad(alpha2);
|
|
|
|
// Interpolated face-gradient of alpha
|
|
surfaceVectorField gradAlphaf = fvc::interpolate(gradAlpha);
|
|
*/
|
|
|
|
surfaceVectorField gradAlphaf
|
|
(
|
|
fvc::interpolate(alpha2)*fvc::interpolate(fvc::grad(alpha1))
|
|
- fvc::interpolate(alpha1)*fvc::interpolate(fvc::grad(alpha2))
|
|
);
|
|
|
|
// Face unit interface normal
|
|
return gradAlphaf/(mag(gradAlphaf) + deltaN_);
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::surfaceScalarField> Foam::multiphaseMixtureThermo::nHatf
|
|
(
|
|
const volScalarField& alpha1,
|
|
const volScalarField& alpha2
|
|
) const
|
|
{
|
|
// Face unit interface normal flux
|
|
return nHatfv(alpha1, alpha2) & mesh_.Sf();
|
|
}
|
|
|
|
|
|
// Correction for the boundary condition on the unit normal nHat on
|
|
// walls to produce the correct contact angle.
|
|
|
|
// The dynamic contact angle is calculated from the component of the
|
|
// velocity on the direction of the interface, parallel to the wall.
|
|
|
|
void Foam::multiphaseMixtureThermo::correctContactAngle
|
|
(
|
|
const phaseModel& alpha1,
|
|
const phaseModel& alpha2,
|
|
surfaceVectorField::Boundary& nHatb
|
|
) const
|
|
{
|
|
const volScalarField::Boundary& gbf
|
|
= alpha1.boundaryField();
|
|
|
|
const fvBoundaryMesh& boundary = mesh_.boundary();
|
|
|
|
forAll(boundary, patchi)
|
|
{
|
|
if (isA<alphaContactAngleFvPatchScalarField>(gbf[patchi]))
|
|
{
|
|
const alphaContactAngleFvPatchScalarField& acap =
|
|
refCast<const alphaContactAngleFvPatchScalarField>(gbf[patchi]);
|
|
|
|
vectorField& nHatPatch = nHatb[patchi];
|
|
|
|
vectorField AfHatPatch
|
|
(
|
|
mesh_.Sf().boundaryField()[patchi]
|
|
/mesh_.magSf().boundaryField()[patchi]
|
|
);
|
|
|
|
const auto tp =
|
|
acap.thetaProps().cfind(interfacePair(alpha1, alpha2));
|
|
|
|
if (!tp.found())
|
|
{
|
|
FatalErrorInFunction
|
|
<< "Cannot find interface " << interfacePair(alpha1, alpha2)
|
|
<< "\n in table of theta properties for patch "
|
|
<< acap.patch().name()
|
|
<< exit(FatalError);
|
|
}
|
|
|
|
const bool matched = (tp.key().first() == alpha1.name());
|
|
|
|
const scalar theta0 = degToRad(tp().theta0(matched));
|
|
scalarField theta(boundary[patchi].size(), theta0);
|
|
|
|
const scalar uTheta = tp().uTheta();
|
|
|
|
// Calculate the dynamic contact angle if required
|
|
if (uTheta > SMALL)
|
|
{
|
|
const scalar thetaA = degToRad(tp().thetaA(matched));
|
|
const scalar thetaR = degToRad(tp().thetaR(matched));
|
|
|
|
// Calculated the component of the velocity parallel to the wall
|
|
vectorField Uwall
|
|
(
|
|
U_.boundaryField()[patchi].patchInternalField()
|
|
- U_.boundaryField()[patchi]
|
|
);
|
|
Uwall -= (AfHatPatch & Uwall)*AfHatPatch;
|
|
|
|
// Find the direction of the interface parallel to the wall
|
|
vectorField nWall
|
|
(
|
|
nHatPatch - (AfHatPatch & nHatPatch)*AfHatPatch
|
|
);
|
|
|
|
// Normalise nWall
|
|
nWall /= (mag(nWall) + SMALL);
|
|
|
|
// Calculate Uwall resolved normal to the interface parallel to
|
|
// the interface
|
|
scalarField uwall(nWall & Uwall);
|
|
|
|
theta += (thetaA - thetaR)*tanh(uwall/uTheta);
|
|
}
|
|
|
|
|
|
// Reset nHatPatch to correspond to the contact angle
|
|
|
|
scalarField a12(nHatPatch & AfHatPatch);
|
|
|
|
scalarField b1(cos(theta));
|
|
|
|
scalarField b2(nHatPatch.size());
|
|
|
|
forAll(b2, facei)
|
|
{
|
|
b2[facei] = cos(acos(a12[facei]) - theta[facei]);
|
|
}
|
|
|
|
scalarField det(1.0 - a12*a12);
|
|
|
|
scalarField a((b1 - a12*b2)/det);
|
|
scalarField b((b2 - a12*b1)/det);
|
|
|
|
nHatPatch = a*AfHatPatch + b*nHatPatch;
|
|
|
|
nHatPatch /= (mag(nHatPatch) + deltaN_.value());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField> Foam::multiphaseMixtureThermo::K
|
|
(
|
|
const phaseModel& alpha1,
|
|
const phaseModel& alpha2
|
|
) const
|
|
{
|
|
tmp<surfaceVectorField> tnHatfv = nHatfv(alpha1, alpha2);
|
|
|
|
correctContactAngle(alpha1, alpha2, tnHatfv.ref().boundaryFieldRef());
|
|
|
|
// Simple expression for curvature
|
|
return -fvc::div(tnHatfv & mesh_.Sf());
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::volScalarField>
|
|
Foam::multiphaseMixtureThermo::nearInterface() const
|
|
{
|
|
tmp<volScalarField> tnearInt
|
|
(
|
|
new volScalarField
|
|
(
|
|
IOobject
|
|
(
|
|
"nearInterface",
|
|
mesh_.time().timeName(),
|
|
mesh_
|
|
),
|
|
mesh_,
|
|
dimensionedScalar(dimless, Zero)
|
|
)
|
|
);
|
|
|
|
for (const phaseModel& phase : phases_)
|
|
{
|
|
tnearInt.ref() =
|
|
max(tnearInt(), pos0(phase - 0.01)*pos0(0.99 - phase));
|
|
}
|
|
|
|
return tnearInt;
|
|
}
|
|
|
|
|
|
void Foam::multiphaseMixtureThermo::solveAlphas
|
|
(
|
|
const scalar cAlpha
|
|
)
|
|
{
|
|
static label nSolves(-1);
|
|
++nSolves;
|
|
|
|
const word alphaScheme("div(phi,alpha)");
|
|
const word alpharScheme("div(phirb,alpha)");
|
|
|
|
surfaceScalarField phic(mag(phi_/mesh_.magSf()));
|
|
phic = min(cAlpha*phic, max(phic));
|
|
|
|
PtrList<surfaceScalarField> alphaPhiCorrs(phases_.size());
|
|
|
|
int phasei = 0;
|
|
for (phaseModel& alpha : phases_)
|
|
{
|
|
alphaPhiCorrs.set
|
|
(
|
|
phasei,
|
|
new surfaceScalarField
|
|
(
|
|
phi_.name() + alpha.name(),
|
|
fvc::flux
|
|
(
|
|
phi_,
|
|
alpha,
|
|
alphaScheme
|
|
)
|
|
)
|
|
);
|
|
|
|
surfaceScalarField& alphaPhiCorr = alphaPhiCorrs[phasei];
|
|
|
|
for (phaseModel& alpha2 : phases_)
|
|
{
|
|
if (&alpha2 == &alpha) continue;
|
|
|
|
surfaceScalarField phir(phic*nHatf(alpha, alpha2));
|
|
|
|
alphaPhiCorr += fvc::flux
|
|
(
|
|
-fvc::flux(-phir, alpha2, alpharScheme),
|
|
alpha,
|
|
alpharScheme
|
|
);
|
|
}
|
|
|
|
MULES::limit
|
|
(
|
|
1.0/mesh_.time().deltaT().value(),
|
|
geometricOneField(),
|
|
alpha,
|
|
phi_,
|
|
alphaPhiCorr,
|
|
zeroField(),
|
|
zeroField(),
|
|
oneField(),
|
|
zeroField(),
|
|
true
|
|
);
|
|
|
|
++phasei;
|
|
}
|
|
|
|
MULES::limitSum(alphaPhiCorrs);
|
|
|
|
rhoPhi_ = dimensionedScalar(dimensionSet(1, 0, -1, 0, 0), Zero);
|
|
|
|
volScalarField sumAlpha
|
|
(
|
|
IOobject
|
|
(
|
|
"sumAlpha",
|
|
mesh_.time().timeName(),
|
|
mesh_
|
|
),
|
|
mesh_,
|
|
dimensionedScalar(dimless, Zero)
|
|
);
|
|
|
|
|
|
volScalarField divU(fvc::div(fvc::absolute(phi_, U_)));
|
|
|
|
|
|
phasei = 0;
|
|
|
|
for (phaseModel& alpha : phases_)
|
|
{
|
|
surfaceScalarField& alphaPhi = alphaPhiCorrs[phasei];
|
|
alphaPhi += upwind<scalar>(mesh_, phi_).flux(alpha);
|
|
|
|
volScalarField::Internal Sp
|
|
(
|
|
IOobject
|
|
(
|
|
"Sp",
|
|
mesh_.time().timeName(),
|
|
mesh_
|
|
),
|
|
mesh_,
|
|
dimensionedScalar(alpha.dgdt().dimensions(), Zero)
|
|
);
|
|
|
|
volScalarField::Internal Su
|
|
(
|
|
IOobject
|
|
(
|
|
"Su",
|
|
mesh_.time().timeName(),
|
|
mesh_
|
|
),
|
|
// Divergence term is handled explicitly to be
|
|
// consistent with the explicit transport solution
|
|
divU*min(alpha, scalar(1))
|
|
);
|
|
|
|
{
|
|
const scalarField& dgdt = alpha.dgdt();
|
|
|
|
forAll(dgdt, celli)
|
|
{
|
|
if (dgdt[celli] < 0.0 && alpha[celli] > 0.0)
|
|
{
|
|
Sp[celli] += dgdt[celli]*alpha[celli];
|
|
Su[celli] -= dgdt[celli]*alpha[celli];
|
|
}
|
|
else if (dgdt[celli] > 0.0 && alpha[celli] < 1.0)
|
|
{
|
|
Sp[celli] -= dgdt[celli]*(1.0 - alpha[celli]);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const phaseModel& alpha2 : phases_)
|
|
{
|
|
if (&alpha2 == &alpha) continue;
|
|
|
|
const scalarField& dgdt2 = alpha2.dgdt();
|
|
|
|
forAll(dgdt2, celli)
|
|
{
|
|
if (dgdt2[celli] > 0.0 && alpha2[celli] < 1.0)
|
|
{
|
|
Sp[celli] -= dgdt2[celli]*(1.0 - alpha2[celli]);
|
|
Su[celli] += dgdt2[celli]*alpha[celli];
|
|
}
|
|
else if (dgdt2[celli] < 0.0 && alpha2[celli] > 0.0)
|
|
{
|
|
Sp[celli] += dgdt2[celli]*alpha2[celli];
|
|
}
|
|
}
|
|
}
|
|
|
|
MULES::explicitSolve
|
|
(
|
|
geometricOneField(),
|
|
alpha,
|
|
alphaPhi,
|
|
Sp,
|
|
Su
|
|
);
|
|
|
|
rhoPhi_ += fvc::interpolate(alpha.thermo().rho())*alphaPhi;
|
|
|
|
Info<< alpha.name() << " volume fraction, min, max = "
|
|
<< alpha.weightedAverage(mesh_.V()).value()
|
|
<< ' ' << min(alpha).value()
|
|
<< ' ' << max(alpha).value()
|
|
<< endl;
|
|
|
|
sumAlpha += alpha;
|
|
|
|
++phasei;
|
|
}
|
|
|
|
Info<< "Phase-sum volume fraction, min, max = "
|
|
<< sumAlpha.weightedAverage(mesh_.V()).value()
|
|
<< ' ' << min(sumAlpha).value()
|
|
<< ' ' << max(sumAlpha).value()
|
|
<< endl;
|
|
|
|
calcAlphas();
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|