Files
openfoam/src/lagrangian/intermediate/submodels/MPPIC/PackingModels/Implicit/Implicit.C
Henry Weller 99a10ecea6 Boundary conditions: Added extrapolatedCalculatedFvPatchField
To be used instead of zeroGradientFvPatchField for temporary fields for
which zero-gradient extrapolation is use to evaluate the boundary field
but avoiding fields derived from temporary field using field algebra
inheriting the zeroGradient boundary condition by the reuse of the
temporary field storage.

zeroGradientFvPatchField should not be used as the default patch field
for any temporary fields and should be avoided for non-temporary fields
except where it is clearly appropriate;
extrapolatedCalculatedFvPatchField and calculatedFvPatchField are
generally more suitable defaults depending on the manner in which the
boundary values are specified or evaluated.

The entire OpenFOAM-dev code-base has been updated following the above
recommendations.

Henry G. Weller
CFD Direct
2016-02-20 22:44:37 +00:00

380 lines
11 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2013-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "Implicit.H"
#include "fixedValueFvsPatchField.H"
#include "fvmDdt.H"
#include "fvmDiv.H"
#include "fvmLaplacian.H"
#include "fvcReconstruct.H"
#include "volPointInterpolation.H"
#include "zeroGradientFvPatchFields.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template<class CloudType>
Foam::PackingModels::Implicit<CloudType>::Implicit
(
const dictionary& dict,
CloudType& owner
)
:
PackingModel<CloudType>(dict, owner, typeName),
alpha_
(
IOobject
(
this->owner().name() + ":alpha",
this->owner().db().time().timeName(),
this->owner().mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
this->owner().mesh(),
dimensionedScalar("zero", dimless, 0.0),
zeroGradientFvPatchScalarField::typeName
),
phiCorrect_(NULL),
uCorrect_(NULL),
applyLimiting_(this->coeffDict().lookup("applyLimiting")),
applyGravity_(this->coeffDict().lookup("applyGravity")),
alphaMin_(readScalar(this->coeffDict().lookup("alphaMin"))),
rhoMin_(readScalar(this->coeffDict().lookup("rhoMin")))
{
alpha_ = this->owner().theta();
alpha_.oldTime();
}
template<class CloudType>
Foam::PackingModels::Implicit<CloudType>::Implicit
(
const Implicit<CloudType>& cm
)
:
PackingModel<CloudType>(cm),
alpha_(cm.alpha_),
phiCorrect_(cm.phiCorrect_()),
uCorrect_(cm.uCorrect_()),
applyLimiting_(cm.applyLimiting_),
applyGravity_(cm.applyGravity_),
alphaMin_(cm.alphaMin_),
rhoMin_(cm.rhoMin_)
{
alpha_.oldTime();
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
template<class CloudType>
Foam::PackingModels::Implicit<CloudType>::~Implicit()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class CloudType>
void Foam::PackingModels::Implicit<CloudType>::cacheFields(const bool store)
{
PackingModel<CloudType>::cacheFields(store);
if (store)
{
const fvMesh& mesh = this->owner().mesh();
const dimensionedScalar deltaT = this->owner().db().time().deltaT();
const word& cloudName = this->owner().name();
const dimensionedVector& g = this->owner().g();
const volScalarField& rhoc = this->owner().rho();
const AveragingMethod<scalar>& rhoAverage =
mesh.lookupObject<AveragingMethod<scalar>>
(
cloudName + ":rhoAverage"
);
const AveragingMethod<vector>& uAverage =
mesh.lookupObject<AveragingMethod<vector> >
(
cloudName + ":uAverage"
);
const AveragingMethod<scalar>& uSqrAverage =
mesh.lookupObject<AveragingMethod<scalar>>
(
cloudName + ":uSqrAverage"
);
mesh.setFluxRequired(alpha_.name());
// Property fields
// ~~~~~~~~~~~~~~~
// volume fraction field
alpha_ = max(this->owner().theta(), alphaMin_);
alpha_.correctBoundaryConditions();
// average density
volScalarField rho
(
IOobject
(
cloudName + ":rho",
this->owner().db().time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("zero", dimDensity, 0),
zeroGradientFvPatchField<scalar>::typeName
);
rho.internalField() = max(rhoAverage.internalField(), rhoMin_);
rho.correctBoundaryConditions();
// Stress field
// ~~~~~~~~~~~~
// stress derivative wrt volume fraction
volScalarField tauPrime
(
IOobject
(
cloudName + ":tauPrime",
this->owner().db().time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("zero", dimPressure, 0),
zeroGradientFvPatchField<scalar>::typeName
);
tauPrime.internalField() =
this->particleStressModel_->dTaudTheta
(
alpha_.internalField(),
rho.internalField(),
uSqrAverage.internalField()
)();
tauPrime.correctBoundaryConditions();
// Gravity flux
// ~~~~~~~~~~~~
tmp<surfaceScalarField> phiGByA;
if (applyGravity_)
(
phiGByA = tmp<surfaceScalarField>
(
new surfaceScalarField
(
"phiGByA",
deltaT*(g & mesh.Sf())*fvc::interpolate(1.0 - rhoc/rho)
)
)
);
// Implicit solution for the volume fraction
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
surfaceScalarField
tauPrimeByRhoAf
(
"tauPrimeByRhoAf",
fvc::interpolate(deltaT*tauPrime/rho)
);
fvScalarMatrix alphaEqn
(
fvm::ddt(alpha_)
- fvc::ddt(alpha_)
- fvm::laplacian(tauPrimeByRhoAf, alpha_)
);
if (applyGravity_)
{
alphaEqn += fvm::div(phiGByA(), alpha_);
}
alphaEqn.solve();
// Generate correction fields
// ~~~~~~~~~~~~~~~~~
// correction volumetric flux
phiCorrect_ = tmp<surfaceScalarField>
(
new surfaceScalarField
(
cloudName + ":phiCorrect",
alphaEqn.flux()/fvc::interpolate(alpha_)
)
);
// limit the correction flux
if (applyLimiting_)
{
volVectorField U
(
IOobject
(
cloudName + ":U",
this->owner().db().time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimVelocity, vector::zero),
fixedValueFvPatchField<vector>::typeName
);
U.internalField() = uAverage.internalField();
U.correctBoundaryConditions();
surfaceScalarField phi
(
cloudName + ":phi",
linearInterpolate(U) & mesh.Sf()
);
if (applyGravity_)
{
phiCorrect_() -= phiGByA();
}
forAll(phiCorrect_(), faceI)
{
// Current and correction fluxes
const scalar phiCurr = phi[faceI];
scalar& phiCorr = phiCorrect_()[faceI];
// Don't limit if the correction is in the opposite direction to
// the flux. We need all the help we can get in this state.
if (phiCurr*phiCorr < 0)
{}
// If the correction and the flux are in the same direction then
// don't apply any more correction than is already present in
// the flux.
else if (phiCorr > 0)
{
phiCorr = max(phiCorr - phiCurr, 0);
}
else
{
phiCorr = min(phiCorr - phiCurr, 0);
}
}
if (applyGravity_)
{
phiCorrect_() += phiGByA();
}
}
// correction velocity
uCorrect_ = tmp<volVectorField>
(
new volVectorField
(
cloudName + ":uCorrect",
fvc::reconstruct(phiCorrect_())
)
);
uCorrect_->correctBoundaryConditions();
//Info << endl;
//Info << " alpha: " << alpha_.internalField() << endl;
//Info << "phiCorrect: " << phiCorrect_->internalField() << endl;
//Info << " uCorrect: " << uCorrect_->internalField() << endl;
//Info << endl;
}
else
{
alpha_.oldTime();
phiCorrect_.clear();
uCorrect_.clear();
}
}
template<class CloudType>
Foam::vector Foam::PackingModels::Implicit<CloudType>::velocityCorrection
(
typename CloudType::parcelType& p,
const scalar deltaT
) const
{
const fvMesh& mesh = this->owner().mesh();
// containing tetrahedron and parcel coordinates within
const label cellI = p.cell();
const label faceI = p.tetFace();
const tetIndices tetIs(cellI, faceI, p.tetPt(), mesh);
List<scalar> tetCoordinates(4);
tetIs.tet(mesh).barycentric(p.position(), tetCoordinates);
// cell velocity
const vector U = uCorrect_()[cellI];
// face geometry
vector nHat = mesh.faces()[faceI].normal(mesh.points());
const scalar nMag = mag(nHat);
nHat /= nMag;
// get face flux
scalar phi;
const label patchI = mesh.boundaryMesh().whichPatch(faceI);
if (patchI == -1)
{
phi = phiCorrect_()[faceI];
}
else
{
phi =
phiCorrect_().boundaryField()[patchI]
[
mesh.boundaryMesh()[patchI].whichFace(faceI)
];
}
// interpolant equal to 1 at the cell centre and 0 at the face
const scalar t = tetCoordinates[0];
// the normal component of the velocity correction is interpolated linearly
// the tangential component is equal to that at the cell centre
return U + (1.0 - t)*nHat*(phi/nMag - (U & nHat));
}
// ************************************************************************* //