Files
openfoam/src/mesh/autoMesh/autoHexMesh/meshRefinement/meshRefinement.C

2366 lines
64 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2004-2011 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*----------------------------------------------------------------------------*/
#include "meshRefinement.H"
#include "volMesh.H"
#include "volFields.H"
#include "surfaceMesh.H"
#include "syncTools.H"
#include "Time.H"
#include "refinementHistory.H"
#include "refinementSurfaces.H"
#include "refinementFeatures.H"
#include "decompositionMethod.H"
#include "regionSplit.H"
#include "fvMeshDistribute.H"
#include "indirectPrimitivePatch.H"
#include "polyTopoChange.H"
#include "removeCells.H"
#include "mapDistributePolyMesh.H"
#include "localPointRegion.H"
#include "pointMesh.H"
#include "pointFields.H"
#include "slipPointPatchFields.H"
#include "fixedValuePointPatchFields.H"
#include "calculatedPointPatchFields.H"
#include "cyclicSlipPointPatchFields.H"
#include "processorPointPatch.H"
#include "globalIndex.H"
#include "meshTools.H"
#include "OFstream.H"
#include "geomDecomp.H"
#include "Random.H"
#include "searchableSurfaces.H"
#include "treeBoundBox.H"
#include "zeroGradientFvPatchFields.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(meshRefinement, 0);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::meshRefinement::calcNeighbourData
(
labelList& neiLevel,
pointField& neiCc
) const
{
const labelList& cellLevel = meshCutter_.cellLevel();
const pointField& cellCentres = mesh_.cellCentres();
label nBoundaryFaces = mesh_.nFaces() - mesh_.nInternalFaces();
if (neiLevel.size() != nBoundaryFaces || neiCc.size() != nBoundaryFaces)
{
FatalErrorIn("meshRefinement::calcNeighbour(..)") << "nBoundaries:"
<< nBoundaryFaces << " neiLevel:" << neiLevel.size()
<< abort(FatalError);
}
const polyBoundaryMesh& patches = mesh_.boundaryMesh();
labelHashSet addedPatchIDSet(meshedPatches());
forAll(patches, patchI)
{
const polyPatch& pp = patches[patchI];
const labelUList& faceCells = pp.faceCells();
const vectorField::subField faceCentres = pp.faceCentres();
const vectorField::subField faceAreas = pp.faceAreas();
label bFaceI = pp.start()-mesh_.nInternalFaces();
if (pp.coupled())
{
forAll(faceCells, i)
{
neiLevel[bFaceI] = cellLevel[faceCells[i]];
neiCc[bFaceI] = cellCentres[faceCells[i]];
bFaceI++;
}
}
else if (addedPatchIDSet.found(patchI))
{
// Face was introduced from cell-cell intersection. Try to
// reconstruct other side cell(centre). Three possibilities:
// - cells same size.
// - preserved cell smaller. Not handled.
// - preserved cell larger.
forAll(faceCells, i)
{
// Extrapolate the face centre.
vector fn = faceAreas[i];
fn /= mag(fn)+VSMALL;
label own = faceCells[i];
label ownLevel = cellLevel[own];
label faceLevel = meshCutter_.getAnchorLevel(pp.start()+i);
// Normal distance from face centre to cell centre
scalar d = ((faceCentres[i] - cellCentres[own]) & fn);
if (faceLevel > ownLevel)
{
// Other cell more refined. Adjust normal distance
d *= 0.5;
}
neiLevel[bFaceI] = cellLevel[ownLevel];
// Calculate other cell centre by extrapolation
neiCc[bFaceI] = faceCentres[i] + d*fn;
bFaceI++;
}
}
else
{
forAll(faceCells, i)
{
neiLevel[bFaceI] = cellLevel[faceCells[i]];
neiCc[bFaceI] = faceCentres[i];
bFaceI++;
}
}
}
// Swap coupled boundaries. Apply separation to cc since is coordinate.
syncTools::swapBoundaryFacePositions(mesh_, neiCc);
syncTools::swapBoundaryFaceList(mesh_, neiLevel);
}
// Find intersections of edges (given by their two endpoints) with surfaces.
// Returns first intersection if there are more than one.
void Foam::meshRefinement::updateIntersections(const labelList& changedFaces)
{
const pointField& cellCentres = mesh_.cellCentres();
// Stats on edges to test. Count proc faces only once.
PackedBoolList isMasterFace(syncTools::getMasterFaces(mesh_));
{
label nMasterFaces = 0;
forAll(isMasterFace, faceI)
{
if (isMasterFace.get(faceI) == 1)
{
nMasterFaces++;
}
}
reduce(nMasterFaces, sumOp<label>());
label nChangedFaces = 0;
forAll(changedFaces, i)
{
if (isMasterFace.get(changedFaces[i]) == 1)
{
nChangedFaces++;
}
}
reduce(nChangedFaces, sumOp<label>());
Info<< "Edge intersection testing:" << nl
<< " Number of edges : " << nMasterFaces << nl
<< " Number of edges to retest : " << nChangedFaces
<< endl;
}
// Get boundary face centre and level. Coupled aware.
labelList neiLevel(mesh_.nFaces()-mesh_.nInternalFaces());
pointField neiCc(mesh_.nFaces()-mesh_.nInternalFaces());
calcNeighbourData(neiLevel, neiCc);
// Collect segments we want to test for
pointField start(changedFaces.size());
pointField end(changedFaces.size());
forAll(changedFaces, i)
{
label faceI = changedFaces[i];
label own = mesh_.faceOwner()[faceI];
start[i] = cellCentres[own];
if (mesh_.isInternalFace(faceI))
{
end[i] = cellCentres[mesh_.faceNeighbour()[faceI]];
}
else
{
end[i] = neiCc[faceI-mesh_.nInternalFaces()];
}
}
// Extend segments a bit
{
const vectorField smallVec(Foam::sqrt(SMALL)*(end-start));
start -= smallVec;
end += smallVec;
}
// Do tests in one go
labelList surfaceHit;
{
labelList surfaceLevel;
surfaces_.findHigherIntersection
(
start,
end,
labelList(start.size(), -1), // accept any intersection
surfaceHit,
surfaceLevel
);
}
// Keep just surface hit
forAll(surfaceHit, i)
{
surfaceIndex_[changedFaces[i]] = surfaceHit[i];
}
// Make sure both sides have same information. This should be
// case in general since same vectors but just to make sure.
syncTools::syncFaceList(mesh_, surfaceIndex_, maxEqOp<label>());
label nHits = countHits();
label nTotHits = returnReduce(nHits, sumOp<label>());
Info<< " Number of intersected edges : " << nTotHits << endl;
// Set files to same time as mesh
setInstance(mesh_.facesInstance());
}
void Foam::meshRefinement::checkData()
{
Pout<< "meshRefinement::checkData() : Checking refinement structure."
<< endl;
meshCutter_.checkMesh();
Pout<< "meshRefinement::checkData() : Checking refinement levels."
<< endl;
meshCutter_.checkRefinementLevels(1, labelList(0));
label nBnd = mesh_.nFaces()-mesh_.nInternalFaces();
Pout<< "meshRefinement::checkData() : Checking synchronization."
<< endl;
// Check face centres
{
// Boundary face centres
pointField::subList boundaryFc
(
mesh_.faceCentres(),
nBnd,
mesh_.nInternalFaces()
);
// Get neighbouring face centres
pointField neiBoundaryFc(boundaryFc);
syncTools::syncBoundaryFacePositions
(
mesh_,
neiBoundaryFc,
eqOp<point>()
);
// Compare
testSyncBoundaryFaceList
(
mergeDistance_,
"testing faceCentres : ",
boundaryFc,
neiBoundaryFc
);
}
// Check meshRefinement
{
// Get boundary face centre and level. Coupled aware.
labelList neiLevel(nBnd);
pointField neiCc(nBnd);
calcNeighbourData(neiLevel, neiCc);
// Collect segments we want to test for
pointField start(mesh_.nFaces());
pointField end(mesh_.nFaces());
forAll(start, faceI)
{
start[faceI] = mesh_.cellCentres()[mesh_.faceOwner()[faceI]];
if (mesh_.isInternalFace(faceI))
{
end[faceI] = mesh_.cellCentres()[mesh_.faceNeighbour()[faceI]];
}
else
{
end[faceI] = neiCc[faceI-mesh_.nInternalFaces()];
}
}
// Extend segments a bit
{
const vectorField smallVec(Foam::sqrt(SMALL)*(end-start));
start -= smallVec;
end += smallVec;
}
// Do tests in one go
labelList surfaceHit;
{
labelList surfaceLevel;
surfaces_.findHigherIntersection
(
start,
end,
labelList(start.size(), -1), // accept any intersection
surfaceHit,
surfaceLevel
);
}
// Get the coupled hit
labelList neiHit
(
SubList<label>
(
surfaceHit,
nBnd,
mesh_.nInternalFaces()
)
);
syncTools::swapBoundaryFaceList(mesh_, neiHit);
// Check
forAll(surfaceHit, faceI)
{
if (surfaceIndex_[faceI] != surfaceHit[faceI])
{
if (mesh_.isInternalFace(faceI))
{
WarningIn("meshRefinement::checkData()")
<< "Internal face:" << faceI
<< " fc:" << mesh_.faceCentres()[faceI]
<< " cached surfaceIndex_:" << surfaceIndex_[faceI]
<< " current:" << surfaceHit[faceI]
<< " ownCc:"
<< mesh_.cellCentres()[mesh_.faceOwner()[faceI]]
<< " neiCc:"
<< mesh_.cellCentres()[mesh_.faceNeighbour()[faceI]]
<< endl;
}
else if
(
surfaceIndex_[faceI]
!= neiHit[faceI-mesh_.nInternalFaces()]
)
{
WarningIn("meshRefinement::checkData()")
<< "Boundary face:" << faceI
<< " fc:" << mesh_.faceCentres()[faceI]
<< " cached surfaceIndex_:" << surfaceIndex_[faceI]
<< " current:" << surfaceHit[faceI]
<< " ownCc:"
<< mesh_.cellCentres()[mesh_.faceOwner()[faceI]]
<< " end:" << end[faceI]
<< endl;
}
}
}
}
{
labelList::subList boundarySurface
(
surfaceIndex_,
mesh_.nFaces()-mesh_.nInternalFaces(),
mesh_.nInternalFaces()
);
labelList neiBoundarySurface(boundarySurface);
syncTools::swapBoundaryFaceList
(
mesh_,
neiBoundarySurface
);
// Compare
testSyncBoundaryFaceList
(
0, // tolerance
"testing surfaceIndex() : ",
boundarySurface,
neiBoundarySurface
);
}
// Find duplicate faces
Pout<< "meshRefinement::checkData() : Counting duplicate faces."
<< endl;
labelList duplicateFace
(
localPointRegion::findDuplicateFaces
(
mesh_,
identity(mesh_.nFaces()-mesh_.nInternalFaces())
+ mesh_.nInternalFaces()
)
);
// Count
{
label nDup = 0;
forAll(duplicateFace, i)
{
if (duplicateFace[i] != -1)
{
nDup++;
}
}
nDup /= 2; // will have counted both faces of duplicate
Pout<< "meshRefinement::checkData() : Found " << nDup
<< " duplicate pairs of faces." << endl;
}
}
void Foam::meshRefinement::setInstance(const fileName& inst)
{
meshCutter_.setInstance(inst);
surfaceIndex_.instance() = inst;
}
// Remove cells. Put exposedFaces (output of getExposedFaces(cellsToRemove))
// into exposedPatchIDs.
Foam::autoPtr<Foam::mapPolyMesh> Foam::meshRefinement::doRemoveCells
(
const labelList& cellsToRemove,
const labelList& exposedFaces,
const labelList& exposedPatchIDs,
removeCells& cellRemover
)
{
polyTopoChange meshMod(mesh_);
// Arbitrary: put exposed faces into last patch.
cellRemover.setRefinement
(
cellsToRemove,
exposedFaces,
exposedPatchIDs,
meshMod
);
// Change the mesh (no inflation)
autoPtr<mapPolyMesh> map = meshMod.changeMesh(mesh_, false, true);
// Update fields
mesh_.updateMesh(map);
// Move mesh (since morphing might not do this)
if (map().hasMotionPoints())
{
mesh_.movePoints(map().preMotionPoints());
}
else
{
// Delete mesh volumes. No other way to do this?
mesh_.clearOut();
}
// Reset the instance for if in overwrite mode
mesh_.setInstance(timeName());
setInstance(mesh_.facesInstance());
// Update local mesh data
cellRemover.updateMesh(map);
// Update intersections. Recalculate intersections for exposed faces.
labelList newExposedFaces = renumber
(
map().reverseFaceMap(),
exposedFaces
);
//Pout<< "removeCells : updating intersections for "
// << newExposedFaces.size() << " newly exposed faces." << endl;
updateMesh(map, newExposedFaces);
return map;
}
// Determine for multi-processor regions the lowest numbered cell on the lowest
// numbered processor.
void Foam::meshRefinement::getCoupledRegionMaster
(
const globalIndex& globalCells,
const boolList& blockedFace,
const regionSplit& globalRegion,
Map<label>& regionToMaster
) const
{
const polyBoundaryMesh& patches = mesh_.boundaryMesh();
forAll(patches, patchI)
{
const polyPatch& pp = patches[patchI];
if (isA<processorPolyPatch>(pp))
{
forAll(pp, i)
{
label faceI = pp.start()+i;
if (!blockedFace[faceI])
{
// Only if there is a connection to the neighbour
// will there be a multi-domain region; if not through
// this face then through another.
label cellI = mesh_.faceOwner()[faceI];
label globalCellI = globalCells.toGlobal(cellI);
Map<label>::iterator iter =
regionToMaster.find(globalRegion[cellI]);
if (iter != regionToMaster.end())
{
label master = iter();
iter() = min(master, globalCellI);
}
else
{
regionToMaster.insert
(
globalRegion[cellI],
globalCellI
);
}
}
}
}
}
// Do reduction
Pstream::mapCombineGather(regionToMaster, minEqOp<label>());
Pstream::mapCombineScatter(regionToMaster);
}
void Foam::meshRefinement::calcLocalRegions
(
const globalIndex& globalCells,
const labelList& globalRegion,
const Map<label>& coupledRegionToMaster,
const scalarField& cellWeights,
Map<label>& globalToLocalRegion,
pointField& localPoints,
scalarField& localWeights
) const
{
globalToLocalRegion.resize(globalRegion.size());
DynamicList<point> localCc(globalRegion.size()/2);
DynamicList<scalar> localWts(globalRegion.size()/2);
forAll(globalRegion, cellI)
{
Map<label>::const_iterator fndMaster =
coupledRegionToMaster.find(globalRegion[cellI]);
if (fndMaster != coupledRegionToMaster.end())
{
// Multi-processor region.
if (globalCells.toGlobal(cellI) == fndMaster())
{
// I am master. Allocate region for me.
globalToLocalRegion.insert(globalRegion[cellI], localCc.size());
localCc.append(mesh_.cellCentres()[cellI]);
localWts.append(cellWeights[cellI]);
}
}
else
{
// Single processor region.
if (globalToLocalRegion.insert(globalRegion[cellI], localCc.size()))
{
localCc.append(mesh_.cellCentres()[cellI]);
localWts.append(cellWeights[cellI]);
}
}
}
localPoints.transfer(localCc);
localWeights.transfer(localWts);
if (localPoints.size() != globalToLocalRegion.size())
{
FatalErrorIn("calcLocalRegions(..)")
<< "localPoints:" << localPoints.size()
<< " globalToLocalRegion:" << globalToLocalRegion.size()
<< exit(FatalError);
}
}
Foam::label Foam::meshRefinement::getShiftedRegion
(
const globalIndex& indexer,
const Map<label>& globalToLocalRegion,
const Map<label>& coupledRegionToShifted,
const label globalRegion
)
{
Map<label>::const_iterator iter =
globalToLocalRegion.find(globalRegion);
if (iter != globalToLocalRegion.end())
{
// Region is 'owned' locally. Convert local region index into global.
return indexer.toGlobal(iter());
}
else
{
return coupledRegionToShifted[globalRegion];
}
}
// Add if not yet present
void Foam::meshRefinement::addUnique(const label elem, labelList& lst)
{
if (findIndex(lst, elem) == -1)
{
label sz = lst.size();
lst.setSize(sz+1);
lst[sz] = elem;
}
}
void Foam::meshRefinement::calcRegionRegions
(
const labelList& globalRegion,
const Map<label>& globalToLocalRegion,
const Map<label>& coupledRegionToMaster,
labelListList& regionRegions
) const
{
// Global region indexing since we now know the shifted regions.
globalIndex shiftIndexer(globalToLocalRegion.size());
// Redo the coupledRegionToMaster to be in shifted region indexing.
Map<label> coupledRegionToShifted(coupledRegionToMaster.size());
forAllConstIter(Map<label>, coupledRegionToMaster, iter)
{
label region = iter.key();
Map<label>::const_iterator fndRegion = globalToLocalRegion.find(region);
if (fndRegion != globalToLocalRegion.end())
{
// A local cell is master of this region. Get its shifted region.
coupledRegionToShifted.insert
(
region,
shiftIndexer.toGlobal(fndRegion())
);
}
Pstream::mapCombineGather(coupledRegionToShifted, minEqOp<label>());
Pstream::mapCombineScatter(coupledRegionToShifted);
}
// Determine region-region connectivity.
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// This is for all my regions (so my local ones or the ones I am master
// of) the neighbouring region indices.
// Transfer lists.
PtrList<HashSet<edge, Hash<edge> > > regionConnectivity(Pstream::nProcs());
forAll(regionConnectivity, procI)
{
if (procI != Pstream::myProcNo())
{
regionConnectivity.set
(
procI,
new HashSet<edge, Hash<edge> >
(
coupledRegionToShifted.size()
/ Pstream::nProcs()
)
);
}
}
// Connectivity. For all my local regions the connected regions.
regionRegions.setSize(globalToLocalRegion.size());
// Add all local connectivity to regionRegions; add all non-local
// to the transferlists.
for (label faceI = 0; faceI < mesh_.nInternalFaces(); faceI++)
{
label ownRegion = globalRegion[mesh_.faceOwner()[faceI]];
label neiRegion = globalRegion[mesh_.faceNeighbour()[faceI]];
if (ownRegion != neiRegion)
{
label shiftOwnRegion = getShiftedRegion
(
shiftIndexer,
globalToLocalRegion,
coupledRegionToShifted,
ownRegion
);
label shiftNeiRegion = getShiftedRegion
(
shiftIndexer,
globalToLocalRegion,
coupledRegionToShifted,
neiRegion
);
// Connection between two regions. Send to owner of region.
// - is ownRegion 'owned' by me
// - is neiRegion 'owned' by me
if (shiftIndexer.isLocal(shiftOwnRegion))
{
label localI = shiftIndexer.toLocal(shiftOwnRegion);
addUnique(shiftNeiRegion, regionRegions[localI]);
}
else
{
label masterProc = shiftIndexer.whichProcID(shiftOwnRegion);
regionConnectivity[masterProc].insert
(
edge(shiftOwnRegion, shiftNeiRegion)
);
}
if (shiftIndexer.isLocal(shiftNeiRegion))
{
label localI = shiftIndexer.toLocal(shiftNeiRegion);
addUnique(shiftOwnRegion, regionRegions[localI]);
}
else
{
label masterProc = shiftIndexer.whichProcID(shiftNeiRegion);
regionConnectivity[masterProc].insert
(
edge(shiftOwnRegion, shiftNeiRegion)
);
}
}
}
// Send
forAll(regionConnectivity, procI)
{
if (procI != Pstream::myProcNo())
{
OPstream str(Pstream::blocking, procI);
str << regionConnectivity[procI];
}
}
// Receive
forAll(regionConnectivity, procI)
{
if (procI != Pstream::myProcNo())
{
IPstream str(Pstream::blocking, procI);
str >> regionConnectivity[procI];
}
}
// Add to addressing.
forAll(regionConnectivity, procI)
{
if (procI != Pstream::myProcNo())
{
for
(
HashSet<edge, Hash<edge> >::const_iterator iter =
regionConnectivity[procI].begin();
iter != regionConnectivity[procI].end();
++iter
)
{
const edge& e = iter.key();
bool someLocal = false;
if (shiftIndexer.isLocal(e[0]))
{
label localI = shiftIndexer.toLocal(e[0]);
addUnique(e[1], regionRegions[localI]);
someLocal = true;
}
if (shiftIndexer.isLocal(e[1]))
{
label localI = shiftIndexer.toLocal(e[1]);
addUnique(e[0], regionRegions[localI]);
someLocal = true;
}
if (!someLocal)
{
FatalErrorIn("calcRegionRegions(..)")
<< "Received from processor " << procI
<< " connection " << e
<< " where none of the elements is local to me."
<< abort(FatalError);
}
}
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
// Construct from components
Foam::meshRefinement::meshRefinement
(
fvMesh& mesh,
const scalar mergeDistance,
const bool overwrite,
const refinementSurfaces& surfaces,
const refinementFeatures& features,
const shellSurfaces& shells
)
:
mesh_(mesh),
mergeDistance_(mergeDistance),
overwrite_(overwrite),
oldInstance_(mesh.pointsInstance()),
surfaces_(surfaces),
features_(features),
shells_(shells),
meshCutter_
(
mesh,
labelIOList
(
IOobject
(
"cellLevel",
mesh_.facesInstance(),
fvMesh::meshSubDir,
mesh,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE,
false
),
labelList(mesh_.nCells(), 0)
),
labelIOList
(
IOobject
(
"pointLevel",
mesh_.facesInstance(),
fvMesh::meshSubDir,
mesh,
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE,
false
),
labelList(mesh_.nPoints(), 0)
),
refinementHistory
(
IOobject
(
"refinementHistory",
mesh_.facesInstance(),
fvMesh::meshSubDir,
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
List<refinementHistory::splitCell8>(0),
labelList(0)
) // no unrefinement
),
surfaceIndex_
(
IOobject
(
"surfaceIndex",
mesh_.facesInstance(),
fvMesh::meshSubDir,
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
labelList(mesh_.nFaces(), -1)
),
userFaceData_(0)
{
// recalculate intersections for all faces
updateIntersections(identity(mesh_.nFaces()));
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::label Foam::meshRefinement::countHits() const
{
// Stats on edges to test. Count proc faces only once.
PackedBoolList isMasterFace(syncTools::getMasterFaces(mesh_));
label nHits = 0;
forAll(surfaceIndex_, faceI)
{
if (surfaceIndex_[faceI] >= 0 && isMasterFace.get(faceI) == 1)
{
nHits++;
}
}
return nHits;
}
// Determine distribution to move connected regions onto one processor.
Foam::labelList Foam::meshRefinement::decomposeCombineRegions
(
const scalarField& cellWeights,
const boolList& blockedFace,
const List<labelPair>& explicitConnections,
decompositionMethod& decomposer
) const
{
// Determine global regions, separated by blockedFaces
regionSplit globalRegion(mesh_, blockedFace, explicitConnections);
// Now globalRegion has global region per cell. Problem is that
// the region might span multiple domains so we want to get
// a "region master" per domain. Note that multi-processor
// regions can only occur on cells on coupled patches.
// Note: since the number of regions does not change by this the
// process can be seen as just a shift of a region onto a single
// processor.
// Global cell numbering engine
globalIndex globalCells(mesh_.nCells());
// Determine per coupled region the master cell (lowest numbered cell
// on lowest numbered processor)
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// (does not determine master for non-coupled=fully-local regions)
Map<label> coupledRegionToMaster(mesh_.nFaces()-mesh_.nInternalFaces());
getCoupledRegionMaster
(
globalCells,
blockedFace,
globalRegion,
coupledRegionToMaster
);
// Determine my regions
// ~~~~~~~~~~~~~~~~~~~~
// These are the fully local ones or the coupled ones of which I am master.
Map<label> globalToLocalRegion;
pointField localPoints;
scalarField localWeights;
calcLocalRegions
(
globalCells,
globalRegion,
coupledRegionToMaster,
cellWeights,
globalToLocalRegion,
localPoints,
localWeights
);
// Find distribution for regions
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
labelList regionDistribution;
if (isA<geomDecomp>(decomposer))
{
regionDistribution = decomposer.decompose(localPoints, localWeights);
}
else
{
labelListList regionRegions;
calcRegionRegions
(
globalRegion,
globalToLocalRegion,
coupledRegionToMaster,
regionRegions
);
regionDistribution = decomposer.decompose
(
regionRegions,
localPoints,
localWeights
);
}
// Convert region-based decomposition back to cell-based one
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Transfer destination processor back to all. Use global reduce for now.
Map<label> regionToDist(coupledRegionToMaster.size());
forAllConstIter(Map<label>, coupledRegionToMaster, iter)
{
label region = iter.key();
Map<label>::const_iterator regionFnd = globalToLocalRegion.find(region);
if (regionFnd != globalToLocalRegion.end())
{
// Master cell is local. Store my distribution.
regionToDist.insert(iter.key(), regionDistribution[regionFnd()]);
}
else
{
// Master cell is not on this processor. Make sure it is overridden.
regionToDist.insert(iter.key(), labelMax);
}
}
Pstream::mapCombineGather(regionToDist, minEqOp<label>());
Pstream::mapCombineScatter(regionToDist);
// Determine destination for all cells
labelList distribution(mesh_.nCells());
forAll(globalRegion, cellI)
{
Map<label>::const_iterator fndRegion =
regionToDist.find(globalRegion[cellI]);
if (fndRegion != regionToDist.end())
{
distribution[cellI] = fndRegion();
}
else
{
// region is local to the processor.
label localRegionI = globalToLocalRegion[globalRegion[cellI]];
distribution[cellI] = regionDistribution[localRegionI];
}
}
return distribution;
}
Foam::autoPtr<Foam::mapDistributePolyMesh> Foam::meshRefinement::balance
(
const bool keepZoneFaces,
const bool keepBaffles,
const scalarField& cellWeights,
decompositionMethod& decomposer,
fvMeshDistribute& distributor
)
{
autoPtr<mapDistributePolyMesh> map;
if (Pstream::parRun())
{
//if (debug_)
//{
// const_cast<Time&>(mesh_.time())++;
//}
// Wanted distribution
labelList distribution;
if (keepZoneFaces || keepBaffles)
{
// Faces where owner and neighbour are not 'connected' so can
// go to different processors.
boolList blockedFace(mesh_.nFaces(), true);
label nUnblocked = 0;
// Pairs of baffles
List<labelPair> couples;
if (keepZoneFaces)
{
// Determine decomposition to keep/move surface zones
// on one processor. The reason is that snapping will make these
// into baffles, move and convert them back so if they were
// proc boundaries after baffling&moving the points might be no
// longer snychronised so recoupling will fail. To prevent this
// keep owner&neighbour of such a surface zone on the same
// processor.
const wordList& fzNames = surfaces().faceZoneNames();
const faceZoneMesh& fZones = mesh_.faceZones();
const polyBoundaryMesh& pbm = mesh_.boundaryMesh();
// Get faces whose owner and neighbour should stay together,
// i.e. they are not 'blocked'.
forAll(fzNames, surfI)
{
if (fzNames[surfI].size())
{
// Get zone
const faceZone& fZone = fZones[fzNames[surfI]];
forAll(fZone, i)
{
label faceI = fZone[i];
if (blockedFace[faceI])
{
if
(
mesh_.isInternalFace(faceI)
|| pbm[pbm.whichPatch(faceI)].coupled()
)
{
blockedFace[faceI] = false;
nUnblocked++;
}
}
}
}
}
// If the faceZones are not synchronised the blockedFace
// might not be synchronised. If you are sure the faceZones
// are synchronised remove below check.
syncTools::syncFaceList
(
mesh_,
blockedFace,
andEqOp<bool>() // combine operator
);
}
reduce(nUnblocked, sumOp<label>());
if (keepZoneFaces)
{
Info<< "Found " << nUnblocked
<< " zoned faces to keep together." << endl;
}
if (keepBaffles)
{
// Get boundary baffles that need to stay together.
couples = getDuplicateFaces // all baffles
(
identity(mesh_.nFaces()-mesh_.nInternalFaces())
+mesh_.nInternalFaces()
);
}
label nCouples = returnReduce(couples.size(), sumOp<label>());
if (keepBaffles)
{
Info<< "Found " << nCouples << " baffles to keep together."
<< endl;
}
if (nUnblocked > 0 || nCouples > 0)
{
Info<< "Applying special decomposition to keep baffles"
<< " and zoned faces together." << endl;
distribution = decomposeCombineRegions
(
cellWeights,
blockedFace,
couples,
decomposer
);
labelList nProcCells(distributor.countCells(distribution));
Pstream::listCombineGather(nProcCells, plusEqOp<label>());
Pstream::listCombineScatter(nProcCells);
Info<< "Calculated decomposition:" << endl;
forAll(nProcCells, procI)
{
Info<< " " << procI << '\t' << nProcCells[procI] << endl;
}
Info<< endl;
}
else
{
// Normal decomposition
distribution = decomposer.decompose
(
mesh_,
mesh_.cellCentres(),
cellWeights
);
}
}
else
{
// Normal decomposition
distribution = decomposer.decompose
(
mesh_,
mesh_.cellCentres(),
cellWeights
);
}
if (debug)
{
labelList nProcCells(distributor.countCells(distribution));
Pout<< "Wanted distribution:" << nProcCells << endl;
Pstream::listCombineGather(nProcCells, plusEqOp<label>());
Pstream::listCombineScatter(nProcCells);
Pout<< "Wanted resulting decomposition:" << endl;
forAll(nProcCells, procI)
{
Pout<< " " << procI << '\t' << nProcCells[procI] << endl;
}
Pout<< endl;
}
// Do actual sending/receiving of mesh
map = distributor.distribute(distribution);
// Update numbering of meshRefiner
distribute(map);
// Set correct instance (for if overwrite)
mesh_.setInstance(timeName());
setInstance(mesh_.facesInstance());
}
return map;
}
// Helper function to get intersected faces
Foam::labelList Foam::meshRefinement::intersectedFaces() const
{
label nBoundaryFaces = 0;
forAll(surfaceIndex_, faceI)
{
if (surfaceIndex_[faceI] != -1)
{
nBoundaryFaces++;
}
}
labelList surfaceFaces(nBoundaryFaces);
nBoundaryFaces = 0;
forAll(surfaceIndex_, faceI)
{
if (surfaceIndex_[faceI] != -1)
{
surfaceFaces[nBoundaryFaces++] = faceI;
}
}
return surfaceFaces;
}
// Helper function to get points used by faces
Foam::labelList Foam::meshRefinement::intersectedPoints() const
{
const faceList& faces = mesh_.faces();
// Mark all points on faces that will become baffles
PackedBoolList isBoundaryPoint(mesh_.nPoints());
label nBoundaryPoints = 0;
forAll(surfaceIndex_, faceI)
{
if (surfaceIndex_[faceI] != -1)
{
const face& f = faces[faceI];
forAll(f, fp)
{
if (isBoundaryPoint.set(f[fp], 1u))
{
nBoundaryPoints++;
}
}
}
}
//// Insert all meshed patches.
//labelList adaptPatchIDs(meshedPatches());
//forAll(adaptPatchIDs, i)
//{
// label patchI = adaptPatchIDs[i];
//
// if (patchI != -1)
// {
// const polyPatch& pp = mesh_.boundaryMesh()[patchI];
//
// label faceI = pp.start();
//
// forAll(pp, i)
// {
// const face& f = faces[faceI];
//
// forAll(f, fp)
// {
// if (isBoundaryPoint.set(f[fp], 1u))
// nBoundaryPoints++;
// }
// }
// faceI++;
// }
// }
//}
// Pack
labelList boundaryPoints(nBoundaryPoints);
nBoundaryPoints = 0;
forAll(isBoundaryPoint, pointI)
{
if (isBoundaryPoint.get(pointI) == 1u)
{
boundaryPoints[nBoundaryPoints++] = pointI;
}
}
return boundaryPoints;
}
//- Create patch from set of patches
Foam::autoPtr<Foam::indirectPrimitivePatch> Foam::meshRefinement::makePatch
(
const polyMesh& mesh,
const labelList& patchIDs
)
{
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Count faces.
label nFaces = 0;
forAll(patchIDs, i)
{
const polyPatch& pp = patches[patchIDs[i]];
nFaces += pp.size();
}
// Collect faces.
labelList addressing(nFaces);
nFaces = 0;
forAll(patchIDs, i)
{
const polyPatch& pp = patches[patchIDs[i]];
label meshFaceI = pp.start();
forAll(pp, i)
{
addressing[nFaces++] = meshFaceI++;
}
}
return autoPtr<indirectPrimitivePatch>
(
new indirectPrimitivePatch
(
IndirectList<face>(mesh.faces(), addressing),
mesh.points()
)
);
}
// Construct pointVectorField with correct boundary conditions
Foam::tmp<Foam::pointVectorField> Foam::meshRefinement::makeDisplacementField
(
const pointMesh& pMesh,
const labelList& adaptPatchIDs
)
{
const polyMesh& mesh = pMesh();
// Construct displacement field.
const pointBoundaryMesh& pointPatches = pMesh.boundary();
wordList patchFieldTypes
(
pointPatches.size(),
slipPointPatchVectorField::typeName
);
forAll(adaptPatchIDs, i)
{
patchFieldTypes[adaptPatchIDs[i]] =
fixedValuePointPatchVectorField::typeName;
}
forAll(pointPatches, patchI)
{
if (isA<processorPointPatch>(pointPatches[patchI]))
{
patchFieldTypes[patchI] = calculatedPointPatchVectorField::typeName;
}
else if (isA<cyclicPointPatch>(pointPatches[patchI]))
{
patchFieldTypes[patchI] = cyclicSlipPointPatchVectorField::typeName;
}
}
// Note: time().timeName() instead of meshRefinement::timeName() since
// postprocessable field.
tmp<pointVectorField> tfld
(
new pointVectorField
(
IOobject
(
"pointDisplacement",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
pMesh,
dimensionedVector("displacement", dimLength, vector::zero),
patchFieldTypes
)
);
return tfld;
}
void Foam::meshRefinement::checkCoupledFaceZones(const polyMesh& mesh)
{
const faceZoneMesh& fZones = mesh.faceZones();
// Check any zones are present anywhere and in same order
{
List<wordList> zoneNames(Pstream::nProcs());
zoneNames[Pstream::myProcNo()] = fZones.names();
Pstream::gatherList(zoneNames);
Pstream::scatterList(zoneNames);
// All have same data now. Check.
forAll(zoneNames, procI)
{
if (procI != Pstream::myProcNo())
{
if (zoneNames[procI] != zoneNames[Pstream::myProcNo()])
{
FatalErrorIn
(
"meshRefinement::checkCoupledFaceZones(const polyMesh&)"
) << "faceZones are not synchronised on processors." << nl
<< "Processor " << procI << " has faceZones "
<< zoneNames[procI] << nl
<< "Processor " << Pstream::myProcNo()
<< " has faceZones "
<< zoneNames[Pstream::myProcNo()] << nl
<< exit(FatalError);
}
}
}
}
// Check that coupled faces are present on both sides.
labelList faceToZone(mesh.nFaces()-mesh.nInternalFaces(), -1);
forAll(fZones, zoneI)
{
const faceZone& fZone = fZones[zoneI];
forAll(fZone, i)
{
label bFaceI = fZone[i]-mesh.nInternalFaces();
if (bFaceI >= 0)
{
if (faceToZone[bFaceI] == -1)
{
faceToZone[bFaceI] = zoneI;
}
else if (faceToZone[bFaceI] == zoneI)
{
FatalErrorIn
(
"meshRefinement::checkCoupledFaceZones(const polyMesh&)"
) << "Face " << fZone[i] << " in zone "
<< fZone.name()
<< " is twice in zone!"
<< abort(FatalError);
}
else
{
FatalErrorIn
(
"meshRefinement::checkCoupledFaceZones(const polyMesh&)"
) << "Face " << fZone[i] << " in zone "
<< fZone.name()
<< " is also in zone "
<< fZones[faceToZone[bFaceI]].name()
<< abort(FatalError);
}
}
}
}
labelList neiFaceToZone(faceToZone);
syncTools::swapBoundaryFaceList(mesh, neiFaceToZone);
forAll(faceToZone, i)
{
if (faceToZone[i] != neiFaceToZone[i])
{
FatalErrorIn
(
"meshRefinement::checkCoupledFaceZones(const polyMesh&)"
) << "Face " << mesh.nInternalFaces()+i
<< " is in zone " << faceToZone[i]
<< ", its coupled face is in zone " << neiFaceToZone[i]
<< abort(FatalError);
}
}
}
Foam::label Foam::meshRefinement::appendPatch
(
fvMesh& mesh,
const label insertPatchI,
const word& patchName,
const dictionary& patchDict
)
{
// Clear local fields and e.g. polyMesh parallelInfo.
mesh.clearOut();
polyBoundaryMesh& polyPatches =
const_cast<polyBoundaryMesh&>(mesh.boundaryMesh());
fvBoundaryMesh& fvPatches = const_cast<fvBoundaryMesh&>(mesh.boundary());
label patchI = polyPatches.size();
// Add polyPatch at the end
polyPatches.setSize(patchI+1);
polyPatches.set
(
patchI,
polyPatch::New
(
patchName,
patchDict,
insertPatchI,
polyPatches
)
);
fvPatches.setSize(patchI+1);
fvPatches.set
(
patchI,
fvPatch::New
(
polyPatches[patchI], // point to newly added polyPatch
mesh.boundary()
)
);
addPatchFields<volScalarField>
(
mesh,
calculatedFvPatchField<scalar>::typeName
);
addPatchFields<volVectorField>
(
mesh,
calculatedFvPatchField<vector>::typeName
);
addPatchFields<volSphericalTensorField>
(
mesh,
calculatedFvPatchField<sphericalTensor>::typeName
);
addPatchFields<volSymmTensorField>
(
mesh,
calculatedFvPatchField<symmTensor>::typeName
);
addPatchFields<volTensorField>
(
mesh,
calculatedFvPatchField<tensor>::typeName
);
// Surface fields
addPatchFields<surfaceScalarField>
(
mesh,
calculatedFvPatchField<scalar>::typeName
);
addPatchFields<surfaceVectorField>
(
mesh,
calculatedFvPatchField<vector>::typeName
);
addPatchFields<surfaceSphericalTensorField>
(
mesh,
calculatedFvPatchField<sphericalTensor>::typeName
);
addPatchFields<surfaceSymmTensorField>
(
mesh,
calculatedFvPatchField<symmTensor>::typeName
);
addPatchFields<surfaceTensorField>
(
mesh,
calculatedFvPatchField<tensor>::typeName
);
return patchI;
}
// Adds patch if not yet there. Returns patchID.
Foam::label Foam::meshRefinement::addPatch
(
fvMesh& mesh,
const word& patchName,
const dictionary& patchInfo
)
{
polyBoundaryMesh& polyPatches =
const_cast<polyBoundaryMesh&>(mesh.boundaryMesh());
fvBoundaryMesh& fvPatches = const_cast<fvBoundaryMesh&>(mesh.boundary());
const label patchI = polyPatches.findPatchID(patchName);
if (patchI != -1)
{
// Already there
return patchI;
}
label insertPatchI = polyPatches.size();
label startFaceI = mesh.nFaces();
forAll(polyPatches, patchI)
{
const polyPatch& pp = polyPatches[patchI];
if (isA<processorPolyPatch>(pp))
{
insertPatchI = patchI;
startFaceI = pp.start();
break;
}
}
dictionary patchDict(patchInfo);
patchDict.set("nFaces", 0);
patchDict.set("startFace", startFaceI);
// Below is all quite a hack. Feel free to change once there is a better
// mechanism to insert and reorder patches.
label addedPatchI = appendPatch(mesh, insertPatchI, patchName, patchDict);
// Create reordering list
// patches before insert position stay as is
labelList oldToNew(addedPatchI+1);
for (label i = 0; i < insertPatchI; i++)
{
oldToNew[i] = i;
}
// patches after insert position move one up
for (label i = insertPatchI; i < addedPatchI; i++)
{
oldToNew[i] = i+1;
}
// appended patch gets moved to insert position
oldToNew[addedPatchI] = insertPatchI;
// Shuffle into place
polyPatches.reorder(oldToNew);
fvPatches.reorder(oldToNew);
reorderPatchFields<volScalarField>(mesh, oldToNew);
reorderPatchFields<volVectorField>(mesh, oldToNew);
reorderPatchFields<volSphericalTensorField>(mesh, oldToNew);
reorderPatchFields<volSymmTensorField>(mesh, oldToNew);
reorderPatchFields<volTensorField>(mesh, oldToNew);
reorderPatchFields<surfaceScalarField>(mesh, oldToNew);
reorderPatchFields<surfaceVectorField>(mesh, oldToNew);
reorderPatchFields<surfaceSphericalTensorField>(mesh, oldToNew);
reorderPatchFields<surfaceSymmTensorField>(mesh, oldToNew);
reorderPatchFields<surfaceTensorField>(mesh, oldToNew);
return insertPatchI;
}
Foam::label Foam::meshRefinement::addMeshedPatch
(
const word& name,
const dictionary& patchInfo
)
{
label meshedI = findIndex(meshedPatches_, name);
if (meshedI != -1)
{
// Already there. Get corresponding polypatch
return mesh_.boundaryMesh().findPatchID(name);
}
else
{
// Add patch
label patchI = addPatch(mesh_, name, patchInfo);
// Store
label sz = meshedPatches_.size();
meshedPatches_.setSize(sz+1);
meshedPatches_[sz] = name;
return patchI;
}
}
Foam::labelList Foam::meshRefinement::meshedPatches() const
{
const polyBoundaryMesh& patches = mesh_.boundaryMesh();
DynamicList<label> patchIDs(meshedPatches_.size());
forAll(meshedPatches_, i)
{
label patchI = patches.findPatchID(meshedPatches_[i]);
if (patchI == -1)
{
FatalErrorIn("meshRefinement::meshedPatches() const")
<< "Problem : did not find patch " << meshedPatches_[i]
<< endl << "Valid patches are " << patches.names()
<< abort(FatalError);
}
if (!polyPatch::constraintType(patches[patchI].type()))
{
patchIDs.append(patchI);
}
}
return patchIDs;
}
Foam::autoPtr<Foam::mapPolyMesh> Foam::meshRefinement::splitMeshRegions
(
const point& keepPoint
)
{
// Determine connected regions. regionSplit is the labelList with the
// region per cell.
regionSplit cellRegion(mesh_);
label regionI = -1;
label cellI = mesh_.findCell(keepPoint);
if (cellI != -1)
{
regionI = cellRegion[cellI];
}
reduce(regionI, maxOp<label>());
if (regionI == -1)
{
FatalErrorIn
(
"meshRefinement::splitMeshRegions(const point&)"
) << "Point " << keepPoint
<< " is not inside the mesh." << nl
<< "Bounding box of the mesh:" << mesh_.bounds()
<< exit(FatalError);
}
// Subset
// ~~~~~~
// Get cells to remove
DynamicList<label> cellsToRemove(mesh_.nCells());
forAll(cellRegion, cellI)
{
if (cellRegion[cellI] != regionI)
{
cellsToRemove.append(cellI);
}
}
cellsToRemove.shrink();
label nCellsToKeep = mesh_.nCells() - cellsToRemove.size();
reduce(nCellsToKeep, sumOp<label>());
Info<< "Keeping all cells in region " << regionI
<< " containing point " << keepPoint << endl
<< "Selected for keeping : "
<< nCellsToKeep
<< " cells." << endl;
// Remove cells
removeCells cellRemover(mesh_);
labelList exposedFaces(cellRemover.getExposedFaces(cellsToRemove));
if (exposedFaces.size())
{
FatalErrorIn
(
"meshRefinement::splitMeshRegions(const point&)"
) << "Removing non-reachable cells should only expose boundary faces"
<< nl
<< "ExposedFaces:" << exposedFaces << abort(FatalError);
}
return doRemoveCells
(
cellsToRemove,
exposedFaces,
labelList(exposedFaces.size(),-1), // irrelevant since 0 size.
cellRemover
);
}
void Foam::meshRefinement::distribute(const mapDistributePolyMesh& map)
{
// mesh_ already distributed; distribute my member data
// surfaceQueries_ ok.
// refinement
meshCutter_.distribute(map);
// surfaceIndex is face data.
map.distributeFaceData(surfaceIndex_);
// maintainedFaces are indices of faces.
forAll(userFaceData_, i)
{
map.distributeFaceData(userFaceData_[i].second());
}
// Redistribute surface and any fields on it.
{
Random rndGen(653213);
// Get local mesh bounding box. Single box for now.
List<treeBoundBox> meshBb(1);
treeBoundBox& bb = meshBb[0];
bb = treeBoundBox(mesh_.points());
bb = bb.extend(rndGen, 1E-4);
// Distribute all geometry (so refinementSurfaces and shellSurfaces)
searchableSurfaces& geometry =
const_cast<searchableSurfaces&>(surfaces_.geometry());
forAll(geometry, i)
{
autoPtr<mapDistribute> faceMap;
autoPtr<mapDistribute> pointMap;
geometry[i].distribute
(
meshBb,
false, // do not keep outside triangles
faceMap,
pointMap
);
if (faceMap.valid())
{
// (ab)use the instance() to signal current modification time
geometry[i].instance() = geometry[i].time().timeName();
}
faceMap.clear();
pointMap.clear();
}
}
}
// Update local data for a mesh change
void Foam::meshRefinement::updateMesh
(
const mapPolyMesh& map,
const labelList& changedFaces
)
{
Map<label> dummyMap(0);
updateMesh(map, changedFaces, dummyMap, dummyMap, dummyMap);
}
void Foam::meshRefinement::storeData
(
const labelList& pointsToStore,
const labelList& facesToStore,
const labelList& cellsToStore
)
{
// For now only meshCutter has storable/retrievable data.
meshCutter_.storeData
(
pointsToStore,
facesToStore,
cellsToStore
);
}
void Foam::meshRefinement::updateMesh
(
const mapPolyMesh& map,
const labelList& changedFaces,
const Map<label>& pointsToRestore,
const Map<label>& facesToRestore,
const Map<label>& cellsToRestore
)
{
// For now only meshCutter has storable/retrievable data.
// Update numbering of cells/vertices.
meshCutter_.updateMesh
(
map,
pointsToRestore,
facesToRestore,
cellsToRestore
);
// Update surfaceIndex
updateList(map.faceMap(), -1, surfaceIndex_);
// Update cached intersection information
updateIntersections(changedFaces);
// Update maintained faces
forAll(userFaceData_, i)
{
labelList& data = userFaceData_[i].second();
if (userFaceData_[i].first() == KEEPALL)
{
// extend list with face-from-face data
updateList(map.faceMap(), -1, data);
}
else if (userFaceData_[i].first() == MASTERONLY)
{
// keep master only
labelList newFaceData(map.faceMap().size(), -1);
forAll(newFaceData, faceI)
{
label oldFaceI = map.faceMap()[faceI];
if (oldFaceI >= 0 && map.reverseFaceMap()[oldFaceI] == faceI)
{
newFaceData[faceI] = data[oldFaceI];
}
}
data.transfer(newFaceData);
}
else
{
// remove any face that has been refined i.e. referenced more than
// once.
// 1. Determine all old faces that get referenced more than once.
// These get marked with -1 in reverseFaceMap
labelList reverseFaceMap(map.reverseFaceMap());
forAll(map.faceMap(), faceI)
{
label oldFaceI = map.faceMap()[faceI];
if (oldFaceI >= 0)
{
if (reverseFaceMap[oldFaceI] != faceI)
{
// faceI is slave face. Mark old face.
reverseFaceMap[oldFaceI] = -1;
}
}
}
// 2. Map only faces with intact reverseFaceMap
labelList newFaceData(map.faceMap().size(), -1);
forAll(newFaceData, faceI)
{
label oldFaceI = map.faceMap()[faceI];
if (oldFaceI >= 0)
{
if (reverseFaceMap[oldFaceI] == faceI)
{
newFaceData[faceI] = data[oldFaceI];
}
}
}
data.transfer(newFaceData);
}
}
}
bool Foam::meshRefinement::write() const
{
bool writeOk =
mesh_.write()
&& meshCutter_.write()
&& surfaceIndex_.write();
// Make sure that any distributed surfaces (so ones which probably have
// been changed) get written as well.
// Note: should ideally have some 'modified' flag to say whether it
// has been changed or not.
searchableSurfaces& geometry =
const_cast<searchableSurfaces&>(surfaces_.geometry());
forAll(geometry, i)
{
searchableSurface& s = geometry[i];
// Check if instance() of surface is not constant or system.
// Is good hint that surface is distributed.
if
(
s.instance() != s.time().system()
&& s.instance() != s.time().caseSystem()
&& s.instance() != s.time().constant()
&& s.instance() != s.time().caseConstant()
)
{
// Make sure it gets written to current time, not constant.
s.instance() = s.time().timeName();
writeOk = writeOk && s.write();
}
}
return writeOk;
}
void Foam::meshRefinement::printMeshInfo(const bool debug, const string& msg)
const
{
const globalMeshData& pData = mesh_.globalData();
if (debug)
{
Pout<< msg.c_str()
<< " : cells(local):" << mesh_.nCells()
<< " faces(local):" << mesh_.nFaces()
<< " points(local):" << mesh_.nPoints()
<< endl;
}
{
PackedBoolList isMasterFace(syncTools::getMasterFaces(mesh_));
label nMasterFaces = 0;
forAll(isMasterFace, i)
{
if (isMasterFace[i])
{
nMasterFaces++;
}
}
PackedBoolList isMasterPoint(syncTools::getMasterPoints(mesh_));
label nMasterPoints = 0;
forAll(isMasterPoint, i)
{
if (isMasterPoint[i])
{
nMasterPoints++;
}
}
Info<< msg.c_str()
<< " : cells:" << pData.nTotalCells()
<< " faces:" << returnReduce(nMasterFaces, sumOp<label>())
<< " points:" << returnReduce(nMasterPoints, sumOp<label>())
<< endl;
}
//if (debug)
{
const labelList& cellLevel = meshCutter_.cellLevel();
labelList nCells(gMax(cellLevel)+1, 0);
forAll(cellLevel, cellI)
{
nCells[cellLevel[cellI]]++;
}
Pstream::listCombineGather(nCells, plusEqOp<label>());
Pstream::listCombineScatter(nCells);
Info<< "Cells per refinement level:" << endl;
forAll(nCells, levelI)
{
Info<< " " << levelI << '\t' << nCells[levelI]
<< endl;
}
}
}
//- Return either time().constant() or oldInstance
Foam::word Foam::meshRefinement::timeName() const
{
if (overwrite_ && mesh_.time().timeIndex() == 0)
{
return oldInstance_;
}
else
{
return mesh_.time().timeName();
}
}
void Foam::meshRefinement::dumpRefinementLevel() const
{
// Note: use time().timeName(), not meshRefinement::timeName()
// so as to dump the fields to 0, not to constant.
volScalarField volRefLevel
(
IOobject
(
"cellLevel",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE,
false
),
mesh_,
dimensionedScalar("zero", dimless, 0),
zeroGradientFvPatchScalarField::typeName
);
const labelList& cellLevel = meshCutter_.cellLevel();
forAll(volRefLevel, cellI)
{
volRefLevel[cellI] = cellLevel[cellI];
}
volRefLevel.write();
const pointMesh& pMesh = pointMesh::New(mesh_);
pointScalarField pointRefLevel
(
IOobject
(
"pointLevel",
mesh_.time().timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
pMesh,
dimensionedScalar("zero", dimless, 0)
);
const labelList& pointLevel = meshCutter_.pointLevel();
forAll(pointRefLevel, pointI)
{
pointRefLevel[pointI] = pointLevel[pointI];
}
pointRefLevel.write();
}
void Foam::meshRefinement::dumpIntersections(const fileName& prefix) const
{
{
const pointField& cellCentres = mesh_.cellCentres();
OFstream str(prefix + "_edges.obj");
label vertI = 0;
Pout<< "meshRefinement::dumpIntersections :"
<< " Writing cellcentre-cellcentre intersections to file "
<< str.name() << endl;
// Redo all intersections
// ~~~~~~~~~~~~~~~~~~~~~~
// Get boundary face centre and level. Coupled aware.
labelList neiLevel(mesh_.nFaces()-mesh_.nInternalFaces());
pointField neiCc(mesh_.nFaces()-mesh_.nInternalFaces());
calcNeighbourData(neiLevel, neiCc);
labelList intersectionFaces(intersectedFaces());
// Collect segments we want to test for
pointField start(intersectionFaces.size());
pointField end(intersectionFaces.size());
forAll(intersectionFaces, i)
{
label faceI = intersectionFaces[i];
start[i] = cellCentres[mesh_.faceOwner()[faceI]];
if (mesh_.isInternalFace(faceI))
{
end[i] = cellCentres[mesh_.faceNeighbour()[faceI]];
}
else
{
end[i] = neiCc[faceI-mesh_.nInternalFaces()];
}
}
// Extend segments a bit
{
const vectorField smallVec(Foam::sqrt(SMALL)*(end-start));
start -= smallVec;
end += smallVec;
}
// Do tests in one go
labelList surfaceHit;
List<pointIndexHit> surfaceHitInfo;
surfaces_.findAnyIntersection
(
start,
end,
surfaceHit,
surfaceHitInfo
);
forAll(intersectionFaces, i)
{
if (surfaceHit[i] != -1)
{
meshTools::writeOBJ(str, start[i]);
vertI++;
meshTools::writeOBJ(str, surfaceHitInfo[i].hitPoint());
vertI++;
meshTools::writeOBJ(str, end[i]);
vertI++;
str << "l " << vertI-2 << ' ' << vertI-1 << nl
<< "l " << vertI-1 << ' ' << vertI << nl;
}
}
}
// Convert to vtk format
string cmd
(
"objToVTK " + prefix + "_edges.obj " + prefix + "_edges.vtk > /dev/null"
);
system(cmd.c_str());
Pout<< endl;
}
void Foam::meshRefinement::write
(
const label flag,
const fileName& prefix
) const
{
if (flag & MESH)
{
write();
}
if (flag & SCALARLEVELS)
{
dumpRefinementLevel();
}
if (flag & OBJINTERSECTIONS && prefix.size())
{
dumpIntersections(prefix);
}
}
// ************************************************************************* //