Files
openfoam/applications/utilities/preProcessing/mapFields/mapFields.C
Mark Olesen a9ffcab5af ENH: region-wise decomposition specification for decomposeParDict
Within decomposeParDict, it is now possible to specify a different
  decomposition method, methods coefficients or number of subdomains
  for each region individually.

  The top-level numberOfSubdomains remains mandatory, since this
  specifies the number of domains for the entire simulation.
  The individual regions may use the same number or fewer domains.

  Any optional method coefficients can be specified in a general
  "coeffs" entry or a method-specific one, eg "metisCoeffs".

  For multiLevel, only the method-specific "multiLevelCoeffs" dictionary
  is used, and is also mandatory.

----

ENH: shortcut specification for multiLevel.

  In addition to the longer dictionary form, it is also possible to
  use a shorter notation for multiLevel decomposition when the same
  decomposition method applies to each level.
2017-11-09 12:30:24 +01:00

684 lines
17 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
mapFields
Group
grpPreProcessingUtilities
Description
Maps volume fields from one mesh to another, reading and
interpolating all fields present in the time directory of both cases.
Parallel and non-parallel cases are handled without the need to reconstruct
them first.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "meshToMesh0.H"
#include "processorFvPatch.H"
#include "MapMeshes.H"
#include "decompositionModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int readNumProcs
(
const argList& args,
const word& optionName,
const Time& runTime
)
{
const word dictName = "decomposeParDict";
fileName dictFile;
if (args.optionReadIfPresent(optionName, dictFile) && isDir(dictFile))
{
dictFile = dictFile / dictName;
}
return decompositionMethod::nDomains
(
IOdictionary
(
decompositionModel::selectIO
(
IOobject
(
dictName,
runTime.system(),
runTime,
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
),
dictFile
)
)
);
}
void mapConsistentMesh
(
const fvMesh& meshSource,
const fvMesh& meshTarget,
const meshToMesh0::order& mapOrder,
const bool subtract
)
{
if (subtract)
{
MapConsistentMesh<minusEqOp>
(
meshSource,
meshTarget,
mapOrder
);
}
else
{
MapConsistentMesh<eqOp>
(
meshSource,
meshTarget,
mapOrder
);
}
}
void mapSubMesh
(
const fvMesh& meshSource,
const fvMesh& meshTarget,
const HashTable<word>& patchMap,
const wordList& cuttingPatches,
const meshToMesh0::order& mapOrder,
const bool subtract
)
{
if (subtract)
{
MapSubMesh<minusEqOp>
(
meshSource,
meshTarget,
patchMap,
cuttingPatches,
mapOrder
);
}
else
{
MapSubMesh<eqOp>
(
meshSource,
meshTarget,
patchMap,
cuttingPatches,
mapOrder
);
}
}
void mapConsistentSubMesh
(
const fvMesh& meshSource,
const fvMesh& meshTarget,
const meshToMesh0::order& mapOrder,
const bool subtract
)
{
if (subtract)
{
MapConsistentSubMesh<minusEqOp>
(
meshSource,
meshTarget,
mapOrder
);
}
else
{
MapConsistentSubMesh<eqOp>
(
meshSource,
meshTarget,
mapOrder
);
}
}
wordList addProcessorPatches
(
const fvMesh& meshTarget,
const wordList& cuttingPatches
)
{
// Add the processor patches to the cutting list
HashTable<label> cuttingPatchTable;
forAll(cuttingPatches, i)
{
cuttingPatchTable.insert(cuttingPatches[i], i);
}
forAll(meshTarget.boundary(), patchi)
{
if (isA<processorFvPatch>(meshTarget.boundary()[patchi]))
{
if
(
!cuttingPatchTable.found
(
meshTarget.boundaryMesh()[patchi].name()
)
)
{
cuttingPatchTable.insert
(
meshTarget.boundaryMesh()[patchi].name(),
-1
);
}
}
}
return cuttingPatchTable.toc();
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"map volume fields from one mesh to another"
);
argList::noParallel();
argList::addArgument("sourceCase");
argList::addOption
(
"sourceTime",
"scalar|'latestTime'",
"specify the source time"
);
argList::addOption
(
"sourceRegion",
"word",
"specify the source region"
);
argList::addOption
(
"targetRegion",
"word",
"specify the target region"
);
argList::addBoolOption
(
"parallelSource",
"the source is decomposed"
);
argList::addBoolOption
(
"parallelTarget",
"the target is decomposed"
);
argList::addBoolOption
(
"consistent",
"source and target geometry and boundary conditions identical"
);
argList::addOption
(
"mapMethod",
"word",
"specify the mapping method"
);
argList::addBoolOption
(
"subtract",
"subtract mapped source from target"
);
argList::addOption
(
"sourceDecomposeParDict",
"file",
"read decomposePar dictionary from specified location"
);
argList::addOption
(
"targetDecomposeParDict",
"file",
"read decomposePar dictionary from specified location"
);
argList args(argc, argv);
if (!args.check())
{
FatalError.exit();
}
fileName rootDirTarget(args.rootPath());
fileName caseDirTarget(args.globalCaseName());
fileName casePath = args[1];
const fileName rootDirSource = casePath.path().toAbsolute();
const fileName caseDirSource = casePath.name();
Info<< "Source: " << rootDirSource << " " << caseDirSource << endl;
word sourceRegion = fvMesh::defaultRegion;
if (args.optionFound("sourceRegion"))
{
sourceRegion = args["sourceRegion"];
Info<< "Source region: " << sourceRegion << endl;
}
Info<< "Target: " << rootDirTarget << " " << caseDirTarget << endl;
word targetRegion = fvMesh::defaultRegion;
if (args.optionFound("targetRegion"))
{
targetRegion = args["targetRegion"];
Info<< "Target region: " << targetRegion << endl;
}
const bool parallelSource = args.optionFound("parallelSource");
const bool parallelTarget = args.optionFound("parallelTarget");
const bool consistent = args.optionFound("consistent");
meshToMesh0::order mapOrder = meshToMesh0::INTERPOLATE;
if (args.optionFound("mapMethod"))
{
const word mapMethod(args["mapMethod"]);
if (mapMethod == "mapNearest")
{
mapOrder = meshToMesh0::MAP;
}
else if (mapMethod == "interpolate")
{
mapOrder = meshToMesh0::INTERPOLATE;
}
else if (mapMethod == "cellPointInterpolate")
{
mapOrder = meshToMesh0::CELL_POINT_INTERPOLATE;
}
else
{
FatalErrorInFunction
<< "Unknown mapMethod " << mapMethod << ". Valid options are: "
<< "mapNearest, interpolate and cellPointInterpolate"
<< exit(FatalError);
}
Info<< "Mapping method: " << mapMethod << endl;
}
const bool subtract = args.optionFound("subtract");
if (subtract)
{
Info<< "Subtracting mapped source field from target" << endl;
}
#include "createTimes.H"
HashTable<word> patchMap;
wordList cuttingPatches;
if (!consistent)
{
IOdictionary mapFieldsDict
(
IOobject
(
"mapFieldsDict",
runTimeTarget.system(),
runTimeTarget,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE,
false
)
);
mapFieldsDict.lookup("patchMap") >> patchMap;
mapFieldsDict.lookup("cuttingPatches") >> cuttingPatches;
}
if (parallelSource && !parallelTarget)
{
const int nProcs = readNumProcs
(
args,
"sourceDecomposeParDict",
runTimeSource
);
Info<< "Create target mesh\n" << endl;
fvMesh meshTarget
(
IOobject
(
targetRegion,
runTimeTarget.timeName(),
runTimeTarget
)
);
Info<< "Target mesh size: " << meshTarget.nCells() << endl;
for (int proci=0; proci<nProcs; proci++)
{
Info<< nl << "Source processor " << proci << endl;
Time runTimeSource
(
Time::controlDictName,
rootDirSource,
caseDirSource/fileName(word("processor") + name(proci))
);
#include "setTimeIndex.H"
fvMesh meshSource
(
IOobject
(
sourceRegion,
runTimeSource.timeName(),
runTimeSource
)
);
Info<< "mesh size: " << meshSource.nCells() << endl;
if (consistent)
{
mapConsistentSubMesh
(
meshSource,
meshTarget,
mapOrder,
subtract
);
}
else
{
mapSubMesh
(
meshSource,
meshTarget,
patchMap,
cuttingPatches,
mapOrder,
subtract
);
}
}
}
else if (!parallelSource && parallelTarget)
{
const int nProcs = readNumProcs
(
args,
"targetDecomposeParDict",
runTimeTarget
);
Info<< "Create source mesh\n" << endl;
#include "setTimeIndex.H"
fvMesh meshSource
(
IOobject
(
sourceRegion,
runTimeSource.timeName(),
runTimeSource
)
);
Info<< "Source mesh size: " << meshSource.nCells() << endl;
for (int proci=0; proci<nProcs; proci++)
{
Info<< nl << "Target processor " << proci << endl;
Time runTimeTarget
(
Time::controlDictName,
rootDirTarget,
caseDirTarget/fileName(word("processor") + name(proci))
);
fvMesh meshTarget
(
IOobject
(
targetRegion,
runTimeTarget.timeName(),
runTimeTarget
)
);
Info<< "mesh size: " << meshTarget.nCells() << endl;
if (consistent)
{
mapConsistentSubMesh
(
meshSource,
meshTarget,
mapOrder,
subtract
);
}
else
{
mapSubMesh
(
meshSource,
meshTarget,
patchMap,
addProcessorPatches(meshTarget, cuttingPatches),
mapOrder,
subtract
);
}
}
}
else if (parallelSource && parallelTarget)
{
const int nProcsSource = readNumProcs
(
args,
"sourceDecomposeParDict",
runTimeSource
);
const int nProcsTarget = readNumProcs
(
args,
"targetDecomposeParDict",
runTimeTarget
);
List<boundBox> bbsTarget(nProcsTarget);
List<bool> bbsTargetSet(nProcsTarget, false);
for (int procISource=0; procISource<nProcsSource; procISource++)
{
Info<< nl << "Source processor " << procISource << endl;
Time runTimeSource
(
Time::controlDictName,
rootDirSource,
caseDirSource/fileName(word("processor") + name(procISource))
);
#include "setTimeIndex.H"
fvMesh meshSource
(
IOobject
(
sourceRegion,
runTimeSource.timeName(),
runTimeSource
)
);
Info<< "mesh size: " << meshSource.nCells() << endl;
boundBox bbSource(meshSource.bounds());
for (int procITarget=0; procITarget<nProcsTarget; procITarget++)
{
if
(
!bbsTargetSet[procITarget]
|| (
bbsTargetSet[procITarget]
&& bbsTarget[procITarget].overlaps(bbSource)
)
)
{
Info<< nl << "Target processor " << procITarget << endl;
Time runTimeTarget
(
Time::controlDictName,
rootDirTarget,
caseDirTarget/fileName(word("processor")
+ name(procITarget))
);
fvMesh meshTarget
(
IOobject
(
targetRegion,
runTimeTarget.timeName(),
runTimeTarget
)
);
Info<< "mesh size: " << meshTarget.nCells() << endl;
bbsTarget[procITarget] = meshTarget.bounds();
bbsTargetSet[procITarget] = true;
if (bbsTarget[procITarget].overlaps(bbSource))
{
if (consistent)
{
mapConsistentSubMesh
(
meshSource,
meshTarget,
mapOrder,
subtract
);
}
else
{
mapSubMesh
(
meshSource,
meshTarget,
patchMap,
addProcessorPatches(meshTarget, cuttingPatches),
mapOrder,
subtract
);
}
}
}
}
}
}
else
{
#include "setTimeIndex.H"
Info<< "Create meshes\n" << endl;
fvMesh meshSource
(
IOobject
(
sourceRegion,
runTimeSource.timeName(),
runTimeSource
)
);
fvMesh meshTarget
(
IOobject
(
targetRegion,
runTimeTarget.timeName(),
runTimeTarget
)
);
Info<< "Source mesh size: " << meshSource.nCells() << tab
<< "Target mesh size: " << meshTarget.nCells() << nl << endl;
if (consistent)
{
mapConsistentMesh(meshSource, meshTarget, mapOrder, subtract);
}
else
{
mapSubMesh
(
meshSource,
meshTarget,
patchMap,
cuttingPatches,
mapOrder,
subtract
);
}
}
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //