mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
349 lines
9.0 KiB
C
349 lines
9.0 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 2007-2010 OpenCFD Ltd.
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "momentOfInertia.H"
|
|
|
|
// * * * * * * * * * * * * * Static Member Functions * * * * * * * * * * * * //
|
|
|
|
void Foam::momentOfInertia::massPropertiesSolid
|
|
(
|
|
const pointField& pts,
|
|
const triFaceList& triFaces,
|
|
scalar density,
|
|
scalar& mass,
|
|
vector& cM,
|
|
tensor& J
|
|
)
|
|
{
|
|
// Reimplemented from: Wm4PolyhedralMassProperties.cpp
|
|
// File Version: 4.10.0 (2009/11/18)
|
|
|
|
// Geometric Tools, LC
|
|
// Copyright (c) 1998-2010
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// http://www.boost.org/LICENSE_1_0.txt
|
|
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
|
|
|
|
// Boost Software License - Version 1.0 - August 17th, 2003
|
|
|
|
// Permission is hereby granted, free of charge, to any person or
|
|
// organization obtaining a copy of the software and accompanying
|
|
// documentation covered by this license (the "Software") to use,
|
|
// reproduce, display, distribute, execute, and transmit the
|
|
// Software, and to prepare derivative works of the Software, and
|
|
// to permit third-parties to whom the Software is furnished to do
|
|
// so, all subject to the following:
|
|
|
|
// The copyright notices in the Software and this entire
|
|
// statement, including the above license grant, this restriction
|
|
// and the following disclaimer, must be included in all copies of
|
|
// the Software, in whole or in part, and all derivative works of
|
|
// the Software, unless such copies or derivative works are solely
|
|
// in the form of machine-executable object code generated by a
|
|
// source language processor.
|
|
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
|
|
// NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
|
|
// ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR
|
|
// OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
|
|
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
|
|
// USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
const scalar r6 = 1.0/6.0;
|
|
const scalar r24 = 1.0/24.0;
|
|
const scalar r60 = 1.0/60.0;
|
|
const scalar r120 = 1.0/120.0;
|
|
|
|
// order: 1, x, y, z, x^2, y^2, z^2, xy, yz, zx
|
|
scalarField integrals(10, 0.0);
|
|
|
|
forAll(triFaces, i)
|
|
{
|
|
const triFace& tri(triFaces[i]);
|
|
|
|
// vertices of triangle i
|
|
vector v0 = pts[tri[0]];
|
|
vector v1 = pts[tri[1]];
|
|
vector v2 = pts[tri[2]];
|
|
|
|
// cross product of edges
|
|
vector eA = v1 - v0;
|
|
vector eB = v2 - v0;
|
|
vector n = eA ^ eB;
|
|
|
|
// compute integral terms
|
|
scalar tmp0, tmp1, tmp2;
|
|
|
|
scalar f1x, f2x, f3x, g0x, g1x, g2x;
|
|
|
|
tmp0 = v0.x() + v1.x();
|
|
f1x = tmp0 + v2.x();
|
|
tmp1 = v0.x()*v0.x();
|
|
tmp2 = tmp1 + v1.x()*tmp0;
|
|
f2x = tmp2 + v2.x()*f1x;
|
|
f3x = v0.x()*tmp1 + v1.x()*tmp2 + v2.x()*f2x;
|
|
g0x = f2x + v0.x()*(f1x + v0.x());
|
|
g1x = f2x + v1.x()*(f1x + v1.x());
|
|
g2x = f2x + v2.x()*(f1x + v2.x());
|
|
|
|
scalar f1y, f2y, f3y, g0y, g1y, g2y;
|
|
|
|
tmp0 = v0.y() + v1.y();
|
|
f1y = tmp0 + v2.y();
|
|
tmp1 = v0.y()*v0.y();
|
|
tmp2 = tmp1 + v1.y()*tmp0;
|
|
f2y = tmp2 + v2.y()*f1y;
|
|
f3y = v0.y()*tmp1 + v1.y()*tmp2 + v2.y()*f2y;
|
|
g0y = f2y + v0.y()*(f1y + v0.y());
|
|
g1y = f2y + v1.y()*(f1y + v1.y());
|
|
g2y = f2y + v2.y()*(f1y + v2.y());
|
|
|
|
scalar f1z, f2z, f3z, g0z, g1z, g2z;
|
|
|
|
tmp0 = v0.z() + v1.z();
|
|
f1z = tmp0 + v2.z();
|
|
tmp1 = v0.z()*v0.z();
|
|
tmp2 = tmp1 + v1.z()*tmp0;
|
|
f2z = tmp2 + v2.z()*f1z;
|
|
f3z = v0.z()*tmp1 + v1.z()*tmp2 + v2.z()*f2z;
|
|
g0z = f2z + v0.z()*(f1z + v0.z());
|
|
g1z = f2z + v1.z()*(f1z + v1.z());
|
|
g2z = f2z + v2.z()*(f1z + v2.z());
|
|
|
|
// update integrals
|
|
integrals[0] += n.x()*f1x;
|
|
integrals[1] += n.x()*f2x;
|
|
integrals[2] += n.y()*f2y;
|
|
integrals[3] += n.z()*f2z;
|
|
integrals[4] += n.x()*f3x;
|
|
integrals[5] += n.y()*f3y;
|
|
integrals[6] += n.z()*f3z;
|
|
integrals[7] += n.x()*(v0.y()*g0x + v1.y()*g1x + v2.y()*g2x);
|
|
integrals[8] += n.y()*(v0.z()*g0y + v1.z()*g1y + v2.z()*g2y);
|
|
integrals[9] += n.z()*(v0.x()*g0z + v1.x()*g1z + v2.x()*g2z);
|
|
}
|
|
|
|
integrals[0] *= r6;
|
|
integrals[1] *= r24;
|
|
integrals[2] *= r24;
|
|
integrals[3] *= r24;
|
|
integrals[4] *= r60;
|
|
integrals[5] *= r60;
|
|
integrals[6] *= r60;
|
|
integrals[7] *= r120;
|
|
integrals[8] *= r120;
|
|
integrals[9] *= r120;
|
|
|
|
// mass
|
|
mass = integrals[0];
|
|
|
|
// center of mass
|
|
cM = vector(integrals[1], integrals[2], integrals[3])/mass;
|
|
|
|
// inertia relative to origin
|
|
J.xx() = integrals[5] + integrals[6];
|
|
J.xy() = -integrals[7];
|
|
J.xz() = -integrals[9];
|
|
J.yx() = J.xy();
|
|
J.yy() = integrals[4] + integrals[6];
|
|
J.yz() = -integrals[8];
|
|
J.zx() = J.xz();
|
|
J.zy() = J.yz();
|
|
J.zz() = integrals[4] + integrals[5];
|
|
|
|
// inertia relative to center of mass
|
|
J -= mass*((cM & cM)*I - cM*cM);
|
|
|
|
// Apply density
|
|
mass *= density;
|
|
J *= density;
|
|
}
|
|
|
|
|
|
void Foam::momentOfInertia::massPropertiesShell
|
|
(
|
|
const pointField& pts,
|
|
const triFaceList& triFaces,
|
|
scalar density,
|
|
scalar& mass,
|
|
vector& cM,
|
|
tensor& J
|
|
)
|
|
{
|
|
// Reset properties for accumulation
|
|
|
|
mass = 0.0;
|
|
cM = vector::zero;
|
|
J = tensor::zero;
|
|
|
|
// Find centre of mass
|
|
|
|
forAll(triFaces, i)
|
|
{
|
|
const triFace& tri(triFaces[i]);
|
|
|
|
triPointRef t
|
|
(
|
|
pts[tri[0]],
|
|
pts[tri[1]],
|
|
pts[tri[2]]
|
|
);
|
|
|
|
scalar triMag = t.mag();
|
|
|
|
cM += triMag*t.centre();
|
|
|
|
mass += triMag;
|
|
}
|
|
|
|
cM /= mass;
|
|
|
|
mass *= density;
|
|
|
|
// Find inertia around centre of mass
|
|
|
|
forAll(triFaces, i)
|
|
{
|
|
const triFace& tri(triFaces[i]);
|
|
|
|
J += triPointRef
|
|
(
|
|
pts[tri[0]],
|
|
pts[tri[1]],
|
|
pts[tri[2]]
|
|
).inertia(cM, density);
|
|
}
|
|
}
|
|
|
|
|
|
void Foam::momentOfInertia::massPropertiesSolid
|
|
(
|
|
const triSurface& surf,
|
|
scalar density,
|
|
scalar& mass,
|
|
vector& cM,
|
|
tensor& J
|
|
)
|
|
{
|
|
triFaceList faces(surf.size());
|
|
|
|
forAll(surf, i)
|
|
{
|
|
faces[i] = triFace(surf[i]);
|
|
}
|
|
|
|
massPropertiesSolid(surf.points(), faces, density, mass, cM, J);
|
|
}
|
|
|
|
|
|
void Foam::momentOfInertia::massPropertiesShell
|
|
(
|
|
const triSurface& surf,
|
|
scalar density,
|
|
scalar& mass,
|
|
vector& cM,
|
|
tensor& J
|
|
)
|
|
{
|
|
triFaceList faces(surf.size());
|
|
|
|
forAll(surf, i)
|
|
{
|
|
faces[i] = triFace(surf[i]);
|
|
}
|
|
|
|
massPropertiesShell(surf.points(), faces, density, mass, cM, J);
|
|
}
|
|
|
|
|
|
Foam::tensor Foam::momentOfInertia::applyParallelAxisTheorem
|
|
(
|
|
scalar mass,
|
|
const vector& cM,
|
|
const tensor& J,
|
|
const vector& refPt
|
|
)
|
|
{
|
|
// The displacement vector (refPt = cM) is the displacement of the
|
|
// new reference point from the centre of mass of the body that
|
|
// the inertia tensor applies to.
|
|
|
|
vector d = (refPt - cM);
|
|
|
|
return J + mass*((d & d)*I - d*d);
|
|
}
|
|
|
|
|
|
Foam::tmp<Foam::tensorField> Foam::momentOfInertia::meshInertia
|
|
(
|
|
const polyMesh& mesh
|
|
)
|
|
{
|
|
tmp<tensorField> tTf = tmp<tensorField>(new tensorField(mesh.nCells()));
|
|
|
|
tensorField& tf = tTf();
|
|
|
|
forAll(tf, cI)
|
|
{
|
|
tf[cI] = meshInertia(mesh, cI);
|
|
}
|
|
|
|
return tTf;
|
|
}
|
|
|
|
|
|
Foam::tensor Foam::momentOfInertia::meshInertia
|
|
(
|
|
const polyMesh& mesh,
|
|
label cellI
|
|
)
|
|
{
|
|
List<tetIndices> cellTets = polyMeshTetDecomposition::cellTetIndices
|
|
(
|
|
mesh,
|
|
cellI
|
|
);
|
|
|
|
triFaceList faces(cellTets.size());
|
|
|
|
forAll(cellTets, cTI)
|
|
{
|
|
faces[cTI] = cellTets[cTI].faceTriIs(mesh);
|
|
}
|
|
|
|
scalar m = 0.0;
|
|
vector cM = vector::zero;
|
|
tensor J = tensor::zero;
|
|
|
|
massPropertiesSolid(mesh.points(), faces, 1.0, m, cM, J);
|
|
|
|
return J;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|