Files
openfoam/src/meshTools/searchableSurfaces/searchableSphere/searchableSphere.C
Mark Olesen 6940b08822 COMP: adjustments for OSX (#2013)
- int64 ambiguity
- std::array include

- bsd-sed syntax (replaces gnu-sed syntax):
  * wmake-build-info
  * wmake-with-bear
2021-03-05 11:17:11 +01:00

1146 lines
26 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2017 OpenFOAM Foundation
Copyright (C) 2018-2021 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Description
The search for nearest point on an ellipse or ellipsoid follows the
description given by Geometric Tools (David Eberly), which also
include some pseudo code. The content is CC-BY 4.0
https://www.geometrictools.com/Documentation/DistancePointEllipseEllipsoid.pdf
In the search algorithm, symmetry is exploited and the searching is
confined to the first (+x,+y,+z) octant, and the radii are ordered
from largest to smallest.
\*---------------------------------------------------------------------------*/
#include "searchableSphere.H"
#include "addToRunTimeSelectionTable.H"
#include <array>
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(searchableSphere, 0);
addToRunTimeSelectionTable
(
searchableSurface,
searchableSphere,
dict
);
addNamedToRunTimeSelectionTable
(
searchableSurface,
searchableSphere,
dict,
sphere
);
}
// * * * * * * * * * * * * * * * Local Functions * * * * * * * * * * * * * * //
// General handling
namespace Foam
{
// Dictionary entry with single scalar or vector quantity
inline static vector getRadius(const word& name, const dictionary& dict)
{
if (token(dict.lookup(name)).isNumber())
{
return vector::uniform(dict.get<scalar>(name));
}
return dict.get<vector>(name);
}
// Test point for negative components, return the sign-changes
inline static unsigned getOctant(const point& p)
{
unsigned octant = 0;
if (p.x() < 0) { octant |= 1; }
if (p.y() < 0) { octant |= 2; }
if (p.z() < 0) { octant |= 4; }
return octant;
}
// Apply sign-changes to point
inline static void applyOctant(point& p, unsigned octant)
{
if (octant & 1) { p.x() = -p.x(); }
if (octant & 2) { p.y() = -p.y(); }
if (octant & 4) { p.z() = -p.z(); }
}
// Vector magnitudes
inline static scalar vectorMagSqr
(
const scalar x,
const scalar y
)
{
return (sqr(x) + sqr(y));
}
inline static scalar vectorMagSqr
(
const scalar x,
const scalar y,
const scalar z
)
{
return (sqr(x) + sqr(y) + sqr(z));
}
inline static scalar vectorMag
(
const scalar x,
const scalar y
)
{
return hypot(x, y);
}
inline static scalar vectorMag
(
const scalar x,
const scalar y,
const scalar z
)
{
return ::sqrt(vectorMagSqr(x, y, z));
}
} // End namespace Foam
// * * * * * * * * * * * * * * * Local Functions * * * * * * * * * * * * * * //
// Searching
namespace Foam
{
// Max iterations for root finding
static constexpr int maxIters = 100;
// Relative ellipse size within the root finding (1)
static constexpr scalar tolCloseness = 1e-3;
// Find root for distance to ellipse
static scalar findRootEllipseDistance
(
const scalar r0, //!< Ratio of major/minor
const scalar z0, //!< Search point y0, scaled by e0 (major)
const scalar z1, //!< Search point y1, scaled by e1 (minor)
scalar g //!< Evaluated ellipse, implicit form
)
{
const scalar n0 = r0*z0;
scalar s0 = z1 - 1;
scalar s1 = (g < 0 ? 0 : vectorMag(n0, z1) - 1);
scalar s = 0;
int nIters = 0;
while (nIters++ < maxIters)
{
s = (s0 + s1) / 2;
if (equal(s, s0) || equal(s, s1))
{
break;
}
g = sqr(n0/(s+r0)) + sqr(z1/(s+1)) - 1;
if (mag(g) < tolCloseness)
{
break;
}
else if (g > 0)
{
s0 = s;
}
else // g < 0
{
s1 = s;
}
}
#ifdef FULLDEBUG
InfoInFunction
<< "Located root in " << nIters << " iterations" << endl;
#endif
return s;
}
// Find root for distance to ellipsoid
static scalar findRootEllipsoidDistance
(
const scalar r0, //!< Ratio of major/minor
const scalar r1, //!< Ratio of mezzo/minor
const scalar z0, //!< Search point y0, scaled by e0 (major)
const scalar z1, //!< Search point y1, scaled by e1 (mezzo)
const scalar z2, //!< Search point y2, scaled by e2 (minor)
scalar g //!< Evaluated ellipsoid, implicit form
)
{
const scalar n0 = r0*z0;
const scalar n1 = r1*z1;
scalar s0 = z2 - 1;
scalar s1 = (g < 0 ? 0 : vectorMag(n0, n1, z2) - 1);
scalar s = 0;
int nIters = 0;
while (nIters++ < maxIters)
{
s = (s0 + s1) / 2;
if (equal(s, s0) || equal(s, s1))
{
break;
}
g = vectorMagSqr(n0/(s+r0), n1/(s+r1), z2/(s+1)) - 1;
if (mag(g) < tolCloseness)
{
break;
}
else if (g > 0)
{
s0 = s;
}
else // g < 0
{
s1 = s;
}
}
#ifdef FULLDEBUG
InfoInFunction
<< "root at " << s << " found in " << nIters
<< " iterations" << endl;
#endif
return s;
}
// Distance (squared) to an ellipse (2D)
static scalar distanceToEllipse
(
// [in] Ellipse characteristics. e0 >= e1
const scalar e0, const scalar e1,
// [in] search point. y0 >= 0, y1 >= 0
const scalar y0, const scalar y1,
// [out] nearest point on ellipse
scalar& x0, scalar& x1
)
{
if (equal(y1, 0))
{
// On the y1 = 0 axis
const scalar numer0 = e0*y0;
const scalar denom0 = sqr(e0) - sqr(e1);
if (numer0 < denom0)
{
const scalar xde0 = numer0/denom0; // Is always < 1
x0 = e0*xde0;
x1 = e1*sqrt(1 - sqr(xde0));
return vectorMagSqr((x0-y0), x1);
}
// Fallthrough
x0 = e0;
x1 = 0;
return sqr(y0-e0);
}
else if (equal(y0, 0))
{
// On the y0 = 0 axis, in the y1 > 0 half
x0 = 0;
x1 = e1;
return sqr(y1-e1);
}
else
{
// In the y0, y1 > 0 quadrant
const scalar z0 = y0 / e0;
const scalar z1 = y1 / e1;
scalar eval = sqr(z0) + sqr(z1);
scalar g = eval - 1;
if (mag(g) < tolCloseness)
{
x0 = y0;
x1 = y1;
if (!equal(eval, 1))
{
// Very close, scale accordingly.
eval = sqrt(eval);
x0 /= eval;
x1 /= eval;
}
return sqr(x0-y0) + sqr(x1-y1);
}
// General search.
// Uses root find to get tbar of F(t) on (-e1^2,+inf)
// Ratio major/minor
const scalar r0 = sqr(e0 / e1);
const scalar sbar =
findRootEllipseDistance(r0, z0, z1, g);
x0 = r0 * y0 / (sbar + r0);
x1 = y1 / (sbar + 1);
// Re-evaluate
eval = sqr(x0/e0) + sqr(x1/e1);
if (!equal(eval, 1))
{
// Very close, scale accordingly.
//
// This is not exact - the point is projected at a
// slight angle, but we are only correcting for
// rounding in the first place.
eval = sqrt(eval);
x0 /= eval;
x1 /= eval;
}
return sqr(x0-y0) + sqr(x1-y1);
}
// Code never reaches here
FatalErrorInFunction
<< "Programming/logic error" << nl
<< exit(FatalError);
return 0;
}
// Distance (squared) to an ellipsoid (3D)
static scalar distanceToEllipsoid
(
// [in] Ellipsoid characteristics. e0 >= e1 >= e2
const scalar e0, const scalar e1, const scalar e2,
// [in] search point. y0 >= 0, y1 >= 0, y2 >= 0
const scalar y0, const scalar y1, const scalar y2,
// [out] nearest point on ellipsoid
scalar& x0, scalar& x1, scalar& x2
)
{
if (equal(y2, 0))
{
// On the y2 = 0 plane. Can use 2D ellipse finding
const scalar numer0 = e0*y0;
const scalar numer1 = e1*y1;
const scalar denom0 = sqr(e0) - sqr(e2);
const scalar denom1 = sqr(e1) - sqr(e2);
if (numer0 < denom0 && numer1 < denom1)
{
const scalar xde0 = numer0/denom0; // Is always < 1
const scalar xde1 = numer1/denom1; // Is always < 1
const scalar disc = (1 - sqr(xde0) - sqr(xde1));
if (disc > 0)
{
x0 = e0*xde0;
x1 = e1*xde1;
x2 = e2*sqrt(disc);
return vectorMagSqr((x0-y0), (x1-y1), x2);
}
}
// Fallthrough - use 2D form
x2 = 0;
return distanceToEllipse(e0,e1, y0,y1, x0,x1);
}
else if (equal(y1, 0))
{
// On the y1 = 0 plane, in the y2 > 0 half
x1 = 0;
if (equal(y0, 0))
{
x0 = 0;
x2 = e2;
return sqr(y2-e2);
}
else // y0 > 0
{
return distanceToEllipse(e0,e2, y0,y2, x0,x2);
}
}
else if (equal(y0, 0))
{
// On the y1 = 0 plane, in the y1, y2 > 0 quadrant
x0 = 0;
return distanceToEllipse(e1,e2, y1,y2, x1,x2);
}
else
{
// In the y0, y1, y2 > 0 octant
const scalar z0 = y0/e0;
const scalar z1 = y1/e1;
const scalar z2 = y2/e2;
scalar eval = vectorMagSqr(z0, z1, z2);
scalar g = eval - 1;
if (mag(g) < tolCloseness)
{
x0 = y0;
x1 = y1;
x2 = y2;
if (equal(eval, 1))
{
// Exactly on the ellipsoid - we are done
return 0;
}
// Very close, scale accordingly.
eval = sqrt(eval);
x0 /= eval;
x1 /= eval;
x2 /= eval;
return vectorMagSqr((x0-y0), (x1-y1), (x2-y2));
}
// General search.
// Compute the unique root tbar of F(t) on (-e2^2,+inf)
const scalar r0 = sqr(e0/e2);
const scalar r1 = sqr(e1/e2);
const scalar sbar =
findRootEllipsoidDistance(r0,r1, z0,z1,z2, g);
x0 = r0*y0/(sbar+r0);
x1 = r1*y1/(sbar+r1);
x2 = y2/(sbar+1);
// Reevaluate
eval = vectorMagSqr((x0/e0), (x1/e1), (x2/e2));
if (!equal(eval, 1))
{
// Not exactly on ellipsoid?
//
// Scale accordingly. This is not exact - the point
// is projected at a slight angle, but we are only
// correcting for rounding in the first place.
eval = sqrt(eval);
x0 /= eval;
x1 /= eval;
x2 /= eval;
}
return vectorMagSqr((x0-y0), (x1-y1), (x2-y2));
}
// Code never reaches here
FatalErrorInFunction
<< "Programming/logic error" << nl
<< exit(FatalError);
return 0;
}
} // End namespace Foam
// * * * * * * * * * * * * * Static Member Functions * * * * * * * * * * * * //
inline Foam::searchableSphere::componentOrder
Foam::searchableSphere::getOrdering(const vector& radii)
{
#ifdef FULLDEBUG
for (direction cmpt = 0; cmpt < vector::nComponents; ++cmpt)
{
if (radii[cmpt] <= 0)
{
FatalErrorInFunction
<< "Radii must be positive, non-zero: " << radii << endl
<< exit(FatalError);
}
}
#endif
std::array<uint8_t, 3> idx{0, 1, 2};
// Reverse sort by magnitude (largest first...)
// Radii are positive (checked above, or just always true)
std::stable_sort
(
idx.begin(),
idx.end(),
[&](uint8_t a, uint8_t b){ return radii[a] > radii[b]; }
);
componentOrder order{idx[0], idx[1], idx[2], shapeType::GENERAL};
if (equal(radii[order.major], radii[order.minor]))
{
order.shape = shapeType::SPHERE;
}
else if (equal(radii[order.major], radii[order.mezzo]))
{
order.shape = shapeType::OBLATE;
}
else if (equal(radii[order.mezzo], radii[order.minor]))
{
order.shape = shapeType::PROLATE;
}
return order;
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
Foam::pointIndexHit Foam::searchableSphere::findNearest
(
const point& sample,
const scalar nearestDistSqr
) const
{
pointIndexHit info(false, sample, -1);
// Handle special cases first
if (order_.shape == shapeType::SPHERE)
{
// Point relative to origin, simultaneously the normal on the sphere
const vector n(sample - origin_);
const scalar magN = mag(n);
// It is a sphere, all radii are identical
if (nearestDistSqr >= sqr(magN - radii_[0]))
{
info.setPoint
(
origin_
+ (magN < ROOTVSMALL ? vector(radii_[0],0,0) : (radii_[0]*n/magN))
);
info.setHit();
info.setIndex(0);
}
return info;
}
//
// Non-sphere
//
// Local point relative to the origin
vector relPt(sample - origin_);
// Detect -ve octants
const unsigned octant = getOctant(relPt);
// Flip everything into positive octant.
// That is what the algorithm expects.
applyOctant(relPt, octant);
// TODO - quick reject for things that are too far away
point& near = info.rawPoint();
scalar distSqr{0};
if (order_.shape == shapeType::OBLATE)
{
// Oblate (major = mezzo > minor) - use 2D algorithm
// Distance from the minor axis to relPt
const scalar axisDist = hypot(relPt[order_.major], relPt[order_.mezzo]);
// Distance from the minor axis to near
scalar nearAxis;
distSqr = distanceToEllipse
(
radii_[order_.major], radii_[order_.minor],
axisDist, relPt[order_.minor],
nearAxis, near[order_.minor]
);
// Now nearAxis is the ratio, by which their components have changed
nearAxis /= (axisDist + VSMALL);
near[order_.major] = relPt[order_.major] * nearAxis;
near[order_.mezzo] = relPt[order_.mezzo] * nearAxis;
// near[order_.minor] = already calculated
}
else if (order_.shape == shapeType::PROLATE)
{
// Prolate (major > mezzo = minor) - use 2D algorithm
// Distance from the major axis to relPt
const scalar axisDist = hypot(relPt[order_.mezzo], relPt[order_.minor]);
// Distance from the major axis to near
scalar nearAxis;
distSqr = distanceToEllipse
(
radii_[order_.major], radii_[order_.minor],
relPt[order_.major], axisDist,
near[order_.major], nearAxis
);
// Now nearAxis is the ratio, by which their components have changed
nearAxis /= (axisDist + VSMALL);
// near[order_.major] = already calculated
near[order_.mezzo] = relPt[order_.mezzo] * nearAxis;
near[order_.minor] = relPt[order_.minor] * nearAxis;
}
else // General case
{
distSqr = distanceToEllipsoid
(
radii_[order_.major], radii_[order_.mezzo], radii_[order_.minor],
relPt[order_.major], relPt[order_.mezzo], relPt[order_.minor],
near[order_.major], near[order_.mezzo], near[order_.minor]
);
}
// Flip everything back to original octant
applyOctant(near, octant);
// From local to global
near += origin_;
// Accept/reject based on distance
if (distSqr <= nearestDistSqr)
{
info.setHit();
}
return info;
}
// From Graphics Gems - intersection of sphere with ray
void Foam::searchableSphere::findLineAll
(
const point& start,
const point& end,
pointIndexHit& near,
pointIndexHit& far
) const
{
near.setMiss();
far.setMiss();
if (order_.shape == shapeType::SPHERE)
{
vector dir(end-start);
const scalar magSqrDir = magSqr(dir);
if (magSqrDir > ROOTVSMALL)
{
dir /= Foam::sqrt(magSqrDir);
const vector relStart(start - origin_);
const scalar v = -(relStart & dir);
const scalar disc = sqr(radius()) - (magSqr(relStart) - sqr(v));
if (disc >= 0)
{
const scalar d = Foam::sqrt(disc);
const scalar nearParam = v - d;
const scalar farParam = v + d;
if (nearParam >= 0 && sqr(nearParam) <= magSqrDir)
{
near.hitPoint(start + nearParam*dir, 0);
}
if (farParam >= 0 && sqr(farParam) <= magSqrDir)
{
far.hitPoint(start + farParam*dir, 0);
}
}
}
return;
}
// General case
// Similar to intersection of sphere with ray (Graphics Gems),
// but we scale x/y/z components according to radii
// to have a unit spheroid for the interactions.
// When finished, we unscale to get the real points
// Note - can also be used for the spherical case
const point relStart = scalePoint(start);
vector dir(scalePoint(end) - relStart);
const scalar magSqrDir = magSqr(dir);
if (magSqrDir > ROOTVSMALL)
{
dir /= Foam::sqrt(magSqrDir);
const scalar v = -(relStart & dir);
const scalar disc = scalar(1) - (magSqr(relStart) - sqr(v));
if (disc >= 0)
{
const scalar d = Foam::sqrt(disc);
const scalar nearParam = v - d;
const scalar farParam = v + d;
if (nearParam >= 0 && sqr(nearParam) <= magSqrDir)
{
near.hitPoint(unscalePoint(relStart + nearParam*dir), 0);
}
if (farParam >= 0 && sqr(farParam) <= magSqrDir)
{
far.hitPoint(unscalePoint(relStart + farParam*dir), 0);
}
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::searchableSphere::searchableSphere
(
const IOobject& io,
const point& origin,
const scalar radius
)
:
searchableSphere(io, origin, vector::uniform(radius))
{}
Foam::searchableSphere::searchableSphere
(
const IOobject& io,
const point& origin,
const vector& radii
)
:
searchableSurface(io),
origin_(origin),
radii_(radii),
order_(getOrdering(radii_)) // NB: use () not {} for copy initialization
{
bounds().min() = (centre() - radii_);
bounds().max() = (centre() + radii_);
}
Foam::searchableSphere::searchableSphere
(
const IOobject& io,
const dictionary& dict
)
:
searchableSphere
(
io,
dict.getCompat<vector>("origin", {{"centre", -1806}}),
getRadius("radius", dict)
)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::point Foam::searchableSphere::surfacePoint
(
const scalar theta,
const scalar phi
) const
{
return point
(
origin_.x() + radii_.x() * cos(theta)*sin(phi),
origin_.y() + radii_.y() * sin(theta)*sin(phi),
origin_.z() + radii_.z() * cos(phi)
);
}
Foam::vector Foam::searchableSphere::surfaceNormal
(
const scalar theta,
const scalar phi
) const
{
// Normal is (x0/r0^2, x1/r1^2, x2/r2^2)
return vector
(
cos(theta)*sin(phi) / radii_.x(),
sin(theta)*sin(phi) / radii_.y(),
cos(phi) / radii_.z()
).normalise();
}
bool Foam::searchableSphere::overlaps(const boundBox& bb) const
{
if (order_.shape == shapeType::SPHERE)
{
return bb.overlaps(origin_, sqr(radius()));
}
if (!bb.valid())
{
return false;
}
// Code largely as per
// boundBox::overlaps(const point& centre, const scalar radiusSqr)
// but normalized for a unit size
// Find out where centre is in relation to bb.
// Find nearest point on bb.
// Note: no major advantage in treating sphere specially
scalar distSqr = 0;
for (direction dir = 0; dir < vector::nComponents; ++dir)
{
const scalar d0 = bb.min()[dir] - origin_[dir];
const scalar d1 = bb.max()[dir] - origin_[dir];
if ((d0 > 0) == (d1 > 0))
{
// Both min/max are on the same side of the origin
// ie, box does not span spheroid in this direction
if (Foam::mag(d0) < Foam::mag(d1))
{
distSqr += Foam::sqr(d0/radii_[dir]);
}
else
{
distSqr += Foam::sqr(d1/radii_[dir]);
}
if (distSqr > 1)
{
return false;
}
}
}
return true;
}
const Foam::wordList& Foam::searchableSphere::regions() const
{
if (regions_.empty())
{
regions_.resize(1);
regions_.first() = "region0";
}
return regions_;
}
void Foam::searchableSphere::boundingSpheres
(
pointField& centres,
scalarField& radiusSqr
) const
{
centres.resize(1);
radiusSqr.resize(1);
centres[0] = origin_;
radiusSqr[0] = Foam::sqr(radius());
// Add a bit to make sure all points are tested inside
radiusSqr += Foam::sqr(SMALL);
}
void Foam::searchableSphere::findNearest
(
const pointField& samples,
const scalarField& nearestDistSqr,
List<pointIndexHit>& info
) const
{
info.resize(samples.size());
forAll(samples, i)
{
info[i] = findNearest(samples[i], nearestDistSqr[i]);
}
}
void Foam::searchableSphere::findLine
(
const pointField& start,
const pointField& end,
List<pointIndexHit>& info
) const
{
info.resize(start.size());
pointIndexHit b;
forAll(start, i)
{
// Pick nearest intersection.
// If none intersected take second one.
findLineAll(start[i], end[i], info[i], b);
if (!info[i].hit() && b.hit())
{
info[i] = b;
}
}
}
void Foam::searchableSphere::findLineAny
(
const pointField& start,
const pointField& end,
List<pointIndexHit>& info
) const
{
info.resize(start.size());
pointIndexHit b;
forAll(start, i)
{
// Pick nearest intersection.
// Discard far intersection
findLineAll(start[i], end[i], info[i], b);
if (!info[i].hit() && b.hit())
{
info[i] = b;
}
}
}
void Foam::searchableSphere::findLineAll
(
const pointField& start,
const pointField& end,
List<List<pointIndexHit>>& info
) const
{
info.resize(start.size());
forAll(start, i)
{
pointIndexHit near, far;
findLineAll(start[i], end[i], near, far);
if (near.hit())
{
if (far.hit())
{
info[i].resize(2);
info[i][0] = near;
info[i][1] = far;
}
else
{
info[i].resize(1);
info[i][0] = near;
}
}
else
{
if (far.hit())
{
info[i].resize(1);
info[i][0] = far;
}
else
{
info[i].clear();
}
}
}
}
void Foam::searchableSphere::getRegion
(
const List<pointIndexHit>& info,
labelList& region
) const
{
region.resize(info.size());
region = 0;
}
void Foam::searchableSphere::getNormal
(
const List<pointIndexHit>& info,
vectorField& normal
) const
{
normal.resize(info.size());
forAll(info, i)
{
if (info[i].hit())
{
if (order_.shape == shapeType::SPHERE)
{
// Special case (sphere)
normal[i] = normalised(info[i].hitPoint() - origin_);
}
else
{
// General case
// Normal is (x0/r0^2, x1/r1^2, x2/r2^2)
normal[i] = scalePoint(info[i].hitPoint());
normal[i].x() /= radii_.x();
normal[i].y() /= radii_.y();
normal[i].z() /= radii_.z();
normal[i].normalise();
}
}
else
{
// Set to what?
normal[i] = Zero;
}
}
}
void Foam::searchableSphere::getVolumeType
(
const pointField& points,
List<volumeType>& volType
) const
{
volType.resize(points.size());
if (order_.shape == shapeType::SPHERE)
{
// Special case. Minor advantage in treating specially
const scalar rad2 = sqr(radius());
forAll(points, pointi)
{
const point& p = points[pointi];
volType[pointi] =
(
(magSqr(p - origin_) <= rad2)
? volumeType::INSIDE : volumeType::OUTSIDE
);
}
return;
}
// General case - could also do component-wise (manually)
// Evaluate: (x/r0)^2 + (y/r1)^2 + (z/r2)^2 - 1 = 0
// [sphere]: x^2 + y^2 + z^2 - R^2 = 0
forAll(points, pointi)
{
const point p = scalePoint(points[pointi]);
volType[pointi] =
(
(magSqr(p) <= 1)
? volumeType::INSIDE : volumeType::OUTSIDE
);
}
}
// ************************************************************************* //